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Introduction to Layered Architecture

¢ Layered Architecture separates technical
responsibilities into distinct layers.

*» Simplifies the design by dividing the system into

manageable, logical parts.

Key benefits:

o Easyto understand and implement.

o Promotes reuse and separation of concerns.

The user makes /_1 ,, \ﬁ_

a rcqucs{ O‘C {','hc Keques-l- I * '\ ResPO“se

N

application... /i =

P —; S
/ Presentation

Workflow

\ Persistence /
AN /

\a/

Patabase

(L0

...and cvcn{:uaily gets

a résponse.

VVVVVV



Case Study: Naan & Pop Restaurant

% Startup restaurant serving Indian-inspired flatbread
sandwiches.

“ Needs a simple website for online ordering quickly.

Requirements:
o Time to market: Quick launch.

o Separation of responsibilities: Clear division for Ul specialists
and database administrators.

o Extensible: Allow future enhancements easily.
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Why Choose Layered Architecture?

¢ Matches Naan & Pop’s needs: simplicity, fast

delivery, separation of technical roles. e
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o Speed vs. maintainability.




Mapping MVC to Layered Architecture
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Layered Architecture — Philosophy

¢ Technically partitioned and usually monolithic.

¢ Domain logic spans multiple layers: and eventially get
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Drivers for Layered Architecture

Why choose layered architecture?

** Specialization: Separates Ul, business logic, and database, allowing team specialisation.
** Physical separation: Matches real-world technology separation (frontend/backend/database).
** Ease of reuse: Technical reuse across multiple projects.

«* Familiarity: Mirrors MVC, easy for developers to grasp.




Physical Architectures in Layered Systems

Common physical architectures:

s Two-tier (Client/Server):
o Client Ul directly accesses the database.

** Three-tier (Web):
o Browser (presentation),
o App server (business logic)
o Database server (persistence)

** Embedded/Mobile:

o All layers bundled into one deployable unit.
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Physical Architecture — Pros and Cons

Physical Architecture

Pros

Cons
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Adding Layers — Integration Layer Example

*» Additional layers can be introduced for specialised tasks
(e.g., Integration layer for delivery partners).

¢ Clearly isolates integration code from core business logic.

Example:

o Integration with Uber Eats API resides entirely within an Integration Layer.




Caveats — Domain Changes Impact Multiple Layers

¢ Layered architecture easily supports changes in technical capabilities.

** However, changes in the domain (e.g., adding pizzas to menu) will affect multiple layers:
o Presentation layer (new Ul)
o Workflow layer (processing new item)
o Persistence layer (storing item data)

Trade-off:
o Ease of technical changes vs. difficulty of domain-wide changes.




Layered Architecture: Strengths

» Feasibility: Quick, cost-effective solutions.

** Technical partitioning: Easy technical reuse.

** Data-intensive operations: Efficient local data processing.

** Performance: High internal performance without network overhead.

** Fast development: Ideal for MVPs and small systems.




Layered Architecture: Weaknesses

*

o
%

Coupling: High risk of tight coupling (“big ball of mud”).

S
%

s Scalability: Difficult to scale individual functionalities independently.

*

Elasticity: Poor performance under bursty traffic conditions.

L)

>

Testability: Increasingly difficult testing as codebase grows.

L)

¢ Deployability: Monolith deployments become cumbersome as systems grow.




Layered Architecture — Rating Chart (Example)
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An online avction system where users can bid on items
Why?

A large backend financial systewm for processing and
settling international wire transfers overnight
Why?

A company entering a new line of business that
expects constant changes to its system

Why?

A swall bakery that wants to start taking online orders
Why?

A trouble ticket system for elecironics purchased
with a support plan, in which field technicians
come to customers to fix problems

Why?

Layered Architecture — Exercises

["] well suited for layered monolith
[] might be a fit for layered monolith

[] Not well suited for layered monolith

[] well suited for layered monolith
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[T Not well suited for layered monolith

[] Well suited for layered monolith
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[] Not well suited for layered monolith

|:| Well suited for layered monolith
[] might be a fit for layered monolith

[T Not well suited for layered monolith

[_] Well suited for layered monolith
[] Might be a fit for layered monolith

[] Not well suited for layered monolith
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Suitable Scenarios for Layered Architecture

Ideal Use Cases:

s Small, simple systems requiring quick delivery (e.g., small business websites).

+»» Data-intensive applications with local database storage

(e.g., desktop CRM apps).

s Applications needing clear specialization boundaries

(e.g., separate Ul, backend, DB teams).




Summary of Layered Architecture

Key points:

s Simple, fast to implement.
¢ Clearly separates technical concerns.
¢ ldeal for stable domains with minimal changes.

¢ Challenging to adapt when domain changes significantly.
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