Layered
Architecture

COMP2511, CSE, UNSW

Introduction to Layered Architecture

¢ Layered Architecture separates technical
responsibilities into distinct layers.

*» Simplifies the design by dividing the system into

manageable, logical parts.

Key benefits:

o Easyto understand and implement.

o Promotes reuse and separation of concerns.

The user makes /_1 ,, \ﬁ_

a rcqucs{ O‘C {','hc Keques-l- I * '\ ResPO“se

N

application... /i =

P —; S
/ Presentation

Workflow

\ Persistence /
AN /

\a/

Patabase

(L0

...and cvcn{:uaily gets

a résponse.

VVVVVV

Case Study: Naan & Pop Restaurant

% Startup restaurant serving Indian-inspired flatbread
sandwiches.

“ Needs a simple website for online ordering quickly.

Requirements:
o Time to market: Quick launch.

o Separation of responsibilities: Clear division for Ul specialists
and database administrators.

o Extensible: Allow future enhancements easily.

January 2023

8 9 10 11 12 15 14
15 6 17 18 9 20 2!
12 23 24 15 2% 27 23

29 20 3\ l

<7
U

Why Choose Layered Architecture?

¢ Matches Naan & Pop’s needs: simplicity, fast

delivery, separation of technical roles. e
is Wog?c‘and — QT—VC)
% Aligns closely with familiar design patterns like et / s Model ‘\
MVC. updates manipulates
¥ |
> © View @ Controller
| . 7
Trade-offs involved: e\ /0@
o Simplicity vs. extensibility. user
\3

o Speed vs. maintainability.

Mapping MVC to Layered Architecture

. Presentation &
“* MVC concepts translate naturally into R v,-.,(.‘\'-_.;,rl\-\..ii.t,l.-ﬂa..*l‘_;ﬁ\-(_;l.

arc h itect ura I I a ye rs. Typical layered architecture Ps user interacts with the system.

—————————————————————————————————— In a layered architecture,

UI elements appear in the
presentation layer.

*»» Additional layers may be introduced based on
real-world constraints (e.g., integration). @ Presentation o Workflow 5 &
& = - :- The wquﬂow .!'_nye.'r L'fmluins
o) WOI'kﬂOW ! most of the application’s code.
: Business logic, workflows,
A eisome ke

D

The model tontains

business logic and o '~
domain entities. Y Model | ~ .
/ = Like most |a\lf':rs, this one is PerSISTGHGG e .
. optional, depending on ‘chc/l .\1:111}: teams use a s|.m<'|all
updates manipulates The eontroller vepresents application’ veauivements persistence layer in their

L—A " architecture to map code-based
k—J ‘ hierarchies (such as object-

1

1 . \

1 orientecd liil Igllilg = 1o sel-
|

|

L I \ﬁ—_Jchc workflow of the

a??“t‘.a{:ion, Combimina model

@ View @ Controller| elements and faclli{a{ing
The view i

b bh their translation info view ~
represen 4 eleme {‘S _________________________________
usevr interface \\S‘ / ! This dotted — A 5

based relational databases.

®, 2 “ STL R =
of the system. S, & box vepresents Monolith” implies % Ppatabase ..
\ o Lhe monolith. T— that this is a single | While it’s optional, the “model”
/ dC?IO‘f'm'.M". unit. from MVC usually maps to a
| database or other persistence
user Lavered Monolﬁ-h mechanism. w
The monolithic deployment model, discussed in Chapter 3, is ':"éi‘:” a?:“zat'om uie 4
. n combined with layered architectures. While it’s common atabase, but they may
The us / {?ﬁnnlunn A : _
" ﬂf interaets with the for different teams to work on the code and on the database, a pevsist information elsewhere:
application th ;
FJCF ¢ fon - vough the user monolithic architecture releases both database and code changes a file system, the eloud, and
intertate, using the workflow together. s0 on

defined by the controller Lo
manipulate the model elements.

Layered Architecture — Philosophy

¢ Technically partitioned and usually monolithic.

¢ Domain logic spans multiple layers: and eventially get
. -' : 2 a response.
o Presentation (Ul components). e wakes)
o Workflow (business logic components). ;;eﬁ;ﬁ:f the Request odyo ~ Response
o Persistence (database schemas and operations). \
< AN

/ Presentation

Implication:
P _ _ Workflow
o Domain changes affect multiple layers.

\ Persistence /

N

Patabase €

Drivers for Layered Architecture

Why choose layered architecture?

** Specialization: Separates Ul, business logic, and database, allowing team specialisation.
** Physical separation: Matches real-world technology separation (frontend/backend/database).
** Ease of reuse: Technical reuse across multiple projects.

«* Familiarity: Mirrors MVC, easy for developers to grasp.

Physical Architectures in Layered Systems

Common physical architectures:

s Two-tier (Client/Server):
o Client Ul directly accesses the database.

** Three-tier (Web):
o Browser (presentation),
o App server (business logic)
o Database server (persistence)

** Embedded/Mobile:

o All layers bundled into one deployable unit.

+

Two-Tier

Pros

Cons

Rich user interface

Presentation

- Medium scalability Re|iabi|i{y is only

medium, betause this

+ High performance

+ Simple(’w

Persistence

- Becomes complex
when it gets big

arthitecture velies on
the network for data

These architettures - Medium reliability sceess
are sm\?|t because ¢
cucr\r'%,'n'mg tan {‘ﬂ’i'ia”'“f [
be]m?'dmén‘i‘,td as a ~
single ?Yr{)cﬁf- & 37
Three-Tier
Pros Cons
Presentation |
+ Detached Ul [] - Least reliability
(typically web) | Move tomplex
) - v - More complex |.pauce ik has the
Highest scalability Distributed most moving parts
Distributed Business rules architecture
architecture headaches
benefits 5 Persistence
Distributed architettures Esvlbu{ccd a;d:{eftires
offer higher scalability RPN
imilar benelits more moving parts and
and similar benets > Sailuce modes. While a single stack
— is nice, it isn't
=8 always portable 4o
other platforms
Embedded/Mobile
Pros Cons

+ Self- i
A single Leth elf-contained

stack ean be an 7 + 9 Single tech stack
advanbgc -For

simplicity. + Highly tunable to

hardware devices

[ml Least scalable

Persistence

Resource-
constrained

Often tied to
implementation
platform

.
UNSW

SYDNEY

Physical Architecture — Pros and Cons

Physical Architecture

Pros

Cons

Two-tier
(Client/Server)

Simple, quick to build

Less secure, poor
scalability

Three-tier (Web)

Scalable, flexible

Complex infrastructure

Embedded/Mobile

High performance, simple
deployment

Limited scalability

Adding Layers — Integration Layer Example

*» Additional layers can be introduced for specialised tasks
(e.g., Integration layer for delivery partners).

¢ Clearly isolates integration code from core business logic.

Example:

o Integration with Uber Eats API resides entirely within an Integration Layer.

Caveats — Domain Changes Impact Multiple Layers

¢ Layered architecture easily supports changes in technical capabilities.

** However, changes in the domain (e.g., adding pizzas to menu) will affect multiple layers:
o Presentation layer (new Ul)
o Workflow layer (processing new item)
o Persistence layer (storing item data)

Trade-off:
o Ease of technical changes vs. difficulty of domain-wide changes.

Layered Architecture: Strengths

» Feasibility: Quick, cost-effective solutions.

** Technical partitioning: Easy technical reuse.

** Data-intensive operations: Efficient local data processing.

** Performance: High internal performance without network overhead.

** Fast development: Ideal for MVPs and small systems.

Layered Architecture: Weaknesses

*

o
%

Coupling: High risk of tight coupling (“big ball of mud”).

S
%

s Scalability: Difficult to scale individual functionalities independently.

*

Elasticity: Poor performance under bursty traffic conditions.

L)

>

Testability: Increasingly difficult testing as codebase grows.

L)

¢ Deployability: Monolith deployments become cumbersome as systems grow.

Layered Architecture — Rating Chart (Example)

Testing isn't especially
easy, but the Leam

has been dca|in3 with
|a‘;'t'rcd arehitectures

i P . 50 lon ! hy
Architectural Characteristic | Star Rating bl f?f:gz:hfv e
Maintainability # D
Testability * * e
Layered
arehitestures are .
rite and simP]c- DEpIU}I'ablmy *
S Well-desianed laver
ondit a1 | SRy * ok ok kK| i
tenoliths in general boast quite hi
don't handle .- st quite high
cealability and Evolvability * performanse.
lasticity well, an
f;}rcr:d Enc_:ﬁvfhd Performance * Kk Kk <
less so.
Scalability ¢
Q'lm?'l'lti{.‘}ﬂ in this
Elasticity * case, leads to
afgcrdabil'l U.f‘
Fault Tolerance) ¢
Overall Cost $ &

An online avction system where users can bid on items
Why?

A large backend financial systewm for processing and
settling international wire transfers overnight
Why?

A company entering a new line of business that
expects constant changes to its system

Why?

A swall bakery that wants to start taking online orders
Why?

A trouble ticket system for elecironics purchased
with a support plan, in which field technicians
come to customers to fix problems

Why?

Layered Architecture — Exercises

["] well suited for layered monolith
[] might be a fit for layered monolith

[] Not well suited for layered monolith

[] well suited for layered monolith
[] might be a fit for layered monolith

[T Not well suited for layered monolith

[] Well suited for layered monolith
[]Might be a fit for layered monolith

[] Not well suited for layered monolith

|:| Well suited for layered monolith
[] might be a fit for layered monolith

[T Not well suited for layered monolith

[_] Well suited for layered monolith
[] Might be a fit for layered monolith

[] Not well suited for layered monolith

15

3.5
UNSW

SYDNEY

Suitable Scenarios for Layered Architecture

Ideal Use Cases:

s Small, simple systems requiring quick delivery (e.g., small business websites).

+»» Data-intensive applications with local database storage

(e.g., desktop CRM apps).

s Applications needing clear specialization boundaries

(e.g., separate Ul, backend, DB teams).

Summary of Layered Architecture

Key points:

s Simple, fast to implement.
¢ Clearly separates technical concerns.
¢ ldeal for stable domains with minimal changes.

¢ Challenging to adapt when domain changes significantly.

	Slide 1: Layered Architecture
	Slide 2: Introduction to Layered Architecture
	Slide 3: Case Study: Naan & Pop Restaurant
	Slide 4: Why Choose Layered Architecture?
	Slide 5: Mapping MVC to Layered Architecture
	Slide 6: Layered Architecture – Philosophy
	Slide 7: Drivers for Layered Architecture
	Slide 8: Physical Architectures in Layered Systems
	Slide 9: Physical Architecture – Pros and Cons
	Slide 10: Adding Layers – Integration Layer Example
	Slide 11: Caveats – Domain Changes Impact Multiple Layers
	Slide 12: Layered Architecture: Strengths
	Slide 13: Layered Architecture: Weaknesses
	Slide 14: Layered Architecture – Rating Chart (Example)
	Slide 15: Layered Architecture – Exercises
	Slide 16: Suitable Scenarios for Layered Architecture
	Slide 17: Summary of Layered Architecture

