
Architectural
Styles

COMP2511, CSE, UNSW

2

These lecture slides are from the book “Head First Software Architecture”,

by Raju Gandhi, Mark Richards, Neal Ford, O'Reilly Media, Inc., March 2024

Introduction to Architectural Styles

❖ Architectural Styles:

o Predefined patterns and philosophies guiding how software systems
are structured and deployed.

❖ Importance of Understanding Styles:

o Facilitates better design decisions.

o Aligns software architecture with project needs.

❖ Example:

o Residential housing styles influenced by geography, climate, personal
preference. Similarly, software architecture varies by project
requirements.

3

Categorizing Architectural Styles

Two main categories for architectural styles:

1. Partitioning

o Technical vs. Domain-based.

2. Deployment

o Monolithic vs. Distributed.

❖Why Categorize?

o Helps systematically analyse and select appropriate
architecture.

4

Partitioning by Technical Concerns

Technical Partitioning:

o Code organized by functional roles or technical layers.

Characteristics:
o Clear separation of responsibilities.

o Easier specialization of teams.

Example: A standard web application:
o Presentation Layer (UI);

o Business Logic Layer (Services)

o Data Persistence Layer (Database)

5

➢ Real-world Analogy:
Roles in a fancy restaurant (host, server, chef, busser)
clearly divided by technical concerns (greeting,
cooking, cleaning).

Partitioning by Domain Concerns

Domain Partitioning:

o Code organized around business domains or problem areas.

Characteristics:
o Alignment with business goals.

o Easier maintenance of related features.

o Strong domain modeling.

Example: An e-commerce platform:

o Customer Domain (user accounts, user interface)

o Inventory Domain (product catalog, stock management)

o Payment Domain (billing, transactions)

6

➢ Real-world Analogy:
Food court restaurants, each specialised in
distinct cuisines (pizza, salads, burgers).

Inventory

Customer

Payment

Comparing Technical vs. Domain Partitioning

Example Scenario: A banking application:

o Technical: Separate teams for frontend, backend, DB administration.

o Domain: Separate teams for loans, investments, account management.

7

Technical Partitioning Domain Partitioning

Layered by technical roles Organized by business areas

Easier for specialised teams Aligned closely with business needs

Risk of over-generalisation Risk of duplicating common functionalities

Deployment Models Overview

1. Monolithic Architecture

o Single deployable unit.

2. Distributed Architecture

o Multiple deployable units
communicating over networks.

Choice affects scalability, complexity, and cost.

8

Monolithic Architecture – Overview and Pros

Monolithic:
o Entire application deployed as one single executable

or package.

Pros:
o Easier initial development.

o Simplified debugging.

o Lower initial deployment cost.

Examples:
o A single .jar (Java) or .exe (.NET) containing all app

logic and resources.

o Smartphone as a single device doing many functions
(calling, browsing, tracking).

9

Monolithic Architecture - Limitations

Cons:

o Difficult to scale independently.

o Single bug can disrupt entire system.

o Inflexible when adapting to changing demands.

Example:

o Scaling a monolithic online store application

o Scaling means duplicating the entire application,
increasing resource consumption significantly.

10

Distributed Architecture - Overview

Distributed:

o Application components deployed separately, each as
individual processes/services.

Pros:
o Independent scalability of components.
o Encourages modular design.
o Fault isolation—failures affect only single units.

Example:

o Microservices architecture for Netflix or Amazon,
allowing independent scaling of services like user
management, video streaming, and recommendation
systems.

11

Distributed Architecture - Challenges

Cons:
o High complexity due to network dependence.
o Increased maintenance and debugging complexity.
o Higher infrastructure and operational costs.

Example:

o Managing distributed transactions across
services—complex coordination required,
increased risk of partial failures.

Real-world Analogy:

o Earlier days—separate devices for GPS, web
browsing, and phone calls each required separate
maintenance and integration.

12

Comparing Monolithic vs. Distributed

Monolithic Distributed

Simpler development & debugging Complex system integration

Lower initial costs Higher upfront infrastructure cost

Scaling is all-or-nothing Individual services scalable

Single failure disrupts whole system Fault tolerance through isolation

13

Discussion - Regulatory and Compliance Needs

Consider special needs like:

o Regulatory compliance (e.g., financial industry).

o Security requirements.

Monolithic:

o Easier control and monitoring in regulated environments.

Distributed:

o Can complicate compliance but increases modularity and maintainability.

Example:

o Banking systems might use monolithic for core banking due to tight regulatory controls,
however distributed services for customer engagement modules.

14

Key Takeaways

❖ Numerous architectural styles exist; each with unique characteristics and trade-offs.

❖ Partitioning styles: Technical vs. Domain.

❖ Deployment models: Monolithic vs. Distributed.

❖ Choice of style influenced by:

o Project goals.

o Scalability requirements.

o Complexity management.

o Cost implications.

15

	Slide 1: Architectural Styles
	Slide 2
	Slide 3: Introduction to Architectural Styles
	Slide 4: Categorizing Architectural Styles
	Slide 5: Partitioning by Technical Concerns
	Slide 6: Partitioning by Domain Concerns
	Slide 7: Comparing Technical vs. Domain Partitioning
	Slide 8: Deployment Models Overview
	Slide 9: Monolithic Architecture – Overview and Pros
	Slide 10: Monolithic Architecture - Limitations
	Slide 11: Distributed Architecture - Overview
	Slide 12: Distributed Architecture - Challenges
	Slide 13: Comparing Monolithic vs. Distributed
	Slide 14: Discussion - Regulatory and Compliance Needs
	Slide 15: Key Takeaways

