Architectural
Styles

COMP2511, CSE, UNSW

These lecture slides are from the book “Head First Software Architecture”,
by Raju Gandhi, Mark Richards, Neal Ford, O'Reilly Media, Inc., March 2024

Introduction to Architectural Styles

¢ Architectural Styles:

o Predefined patterns and philosophies guiding how software systems
are structured and deployed.

¢ Importance of Understanding Styles:
o Facilitates better design decisions.

o Aligns software architecture with project needs.

s Example:

o Residential housing styles influenced by geography, climate, personal
preference. Similarly, software architecture varies by project
requirements.

AR .
i O s N A B
A7 = 1 Y _,,_ pp— ,_._‘ =
Eath one of JC‘M“-j

Sjc\flﬂﬁ exists for a
veason—be that

Wiskorital, eulbural, ‘N = ._.=“ B _:.—‘_'i >
Leehnical | E R
3 | @

Categorizing Architectural Styles

Two main categories for architectural styles:

1. Partitioning Partitioning
o Technical vs. Domain-based. Technical Domain
2' Deployment Monolith . Modular monolith I

Microkernel ‘

o Monolithic vs. Distributed.

Deployment model

Distributed

| Event-driven Microservices

** Why Categorize?

o Helps systematically analyse and select appropriate
architecture.

Partitioning by Technical Concerns

Technical Partitioning:

o Code organized by functional roles or technical layers.

Characteristics: Persistence
o Clear separation of responsibilities. : —
o Easier specialization of teams.

Example: A standard web application:

o Presentation Layer (Ul); > Real-world Analogy:
o Business Logic Layer (Services) Roles in a fancy restaurant (host, server, chef, busser)
o Data Persistence Layer (Database) clearly divided by technical concerns (greeting,

cooking, cleaning).

Partitioning by Domain Concerns

Domain Partitioning:

o Code organized around business domains or problem areas.

[Customer

Characteristics: | _ _P_a)_/m ent

o Alignment with business goals. -

o Easier maintenance of related features.
o Strong domain modeling.

Inventory

Example: An e-commerce platform:

o Customer Domain (user accounts, user interface) > Real-world Analogy:
o Inventory Domain (product catalog, stock management) Food court restaurants, each specialised in
o Payment Domain (billing, transactions) distinct cuisines (pizza, salads, burgers).

Comparing Technical vs. Domain Partitioning

Technical Partitioning Domain Partitioning

Layered by technical roles Organized by business areas
Easier for specialised teams Aligned closely with business needs
Risk of over-generalisation Risk of duplicating common functionalities

Example Scenario: A banking application:
o Technical: Separate teams for frontend, backend, DB administration.

o Domain: Separate teams for loans, investments, account management.

VVVVVV

Deployment Models Overview

1. Monolithic Architecture

H 1 is is @ monolithi ic”cjcsg:#;/rg—l?rwii g ehetucable
o Single deployable unit. g\;ﬁf:;a“‘;f/% o
. | o
2. Distributed Architecture unit e Retdl that achitert
o Multiple deployable units ::;l:iiﬁffiffﬁf“‘
communicating over networks. i

Choice affects scalability, complexity, and cost.

Distributed =
architettures pping

deploy lots o«c_)
smaller units.

SYDNEY

Monolithic Architecture — Overview and Pros

Monolithic: /\ simplicity
Ol—__l Typically, monelithic

o Entire application deployed as one single executable applications have a single

or pa C ka ge codebase, which makes them Q 2 feasibﬂity
. easier to develop and to Rushing to market? Monoliths
understand. g are simple and relatvely cheap,

oY freeing you to experiment and
deliver systems faster.

Pros: ’ o O | cost
. . ene sswn ol Monoliths are cheaper to build
O EaSI erin Itlal devel Opment' and operate because they tend /

to be simpler and require less

o Simplified debugging. infrastructure,
o Lower initial deployment cost. N These e jusk 3 few of many

@ debuggability

Examples: reliability sk race, e s comy

o Asingle .jar (Java) or .exe (.NET) containing all app K072 monclithivan sland. Tt makes el codeimonepice
logic and resources. usually means more reliable

o Smartphone as a single device doing many functions Qiﬁﬁi o Zflfﬁfiiﬁ E:'nsﬂf:m%

(calling, browsing, tracking). next page

applications.

Monolithic Architecture - Limitations

Cons:
o Difficult to scale independently.
o Single bug can disrupt entire system.

o Inflexible when adapting to changing demands.

Example:
o Scaling a monolithic online store application

o Scaling means duplicating the entire application,
increasing resource consumption significantly.

/ scalability
I I If you ever need to scale

] l one part of the application
independently of the others,

nothing with monoliths.

ik

reliability ,—

VA
R

deploy as a single unit, any bug
that degrades the service will
affect the whole monolith.

Thevre's veliability again_/

/ Because monolithic applications

J}'ﬁc x evolvability

well, you’re in trouble. It’s all or \

Again, fhis isnt the entire
lisk—iust a Lew tons we

{‘,hough{: wed ?oin{: out.

JaN

7
£,

/

A\

sV

As monolithic applications grow,
making changes becomes harder.
Furthermore, since the whole
application is one codebase, you
can’t adapt different technology
stacks to different domains if
you need to.

deployability
Implementing any change

will require redeploying the
whole application, which could
introduce a lot of risk.

Distributed Architecture - Overview

Distributed:

o Application components deployed separately, each as
individual processes/services.

Pros:

o Independent scalability of components.

o Encourages modular design.

o Fault isolation—failures affect only single units.

Example:

o Microservices architecture for Netflix or Amazon,
allowing independent scaling of services like user
management, video streaming, and recommendation
systems.

=l

-
Man—
MAaa——
Faw—
MAr~—

Sp
=

scalability

Distributed architectures deploy
different logical components
separately from one another.
Need to scale one? Go ahead!

testability

Each deplovment only serves

a select group of logical
components. This makes

testing a lot easier—even as (hcﬁ
application grows.

Distributed architectures
are 3 lot more testable

than monolithie
applications.

fault tolerance
Even if one piece of the system
fails, the rest of the system can
continue functioning.

@2@ modularity

S

L.
v

&

Distributed architectures
encourage a high degree of
modularity because their logical
components must be loosely
coupled.

/&7 deployability

.'/

Distributed architectures

encourage lots of small unirs.

They evolved after modern

engineering principles like
continuous integration,
continuous deployments, and
automated testing became the
norm.

H&Ving lots of small units
with good {es‘tabihjty
redutes the visk assotiated
with ch|oyin5 chahgts.

Distributed Architecture - Challenges

Cons:

o High complexity due to network dependence.

o Increased maintenance and debugging complexity.
o Higherinfrastructure and operational costs.

Example:

o Managing distributed transactions across
services—complex coordination required,
increased risk of partial failures.

Real-world Analogy:

o Earlier days—separate devices for GPS, web
browsing, and phone calls each required separate
maintenance and integration.

JAN
o

performance

Distributed architectures

involve lots of small services

that communicate with each
other over the network to do
their work. This can affect
performance, and although there
are ways to improve this, 1U’s
certainly something you should
keep in mind.

simplicity

Distributed systems are the
opposite of simple. Everything
from understanding how they
work to debugging errors

becomes challenging.

We tannot emphasize
enough how complex
distvibuted arehitectures
¢an bel

cost

Deploying multiple units means
more servers. Not to mention,
these services need to talk to one
another—which entails setting
up and maintaining network
mfrastructure.

_chugging distributed systems
involves {hinkmg dcc?ﬁy about
fcggingy and usuaHy vequires
aggrcga{:ing logs. This also
adds to the cost

debuggabilityé)

Errors could happen in any
service involved in servicing

a request. Since logical
components are deployed in
separate units, tracing errors can
get very tricky.

Comparing Monolithic vs. Distributed

Simpler development & debugging
Lower initial costs
Scaling is all-or-nothing

Single failure disrupts whole system

Complex system integration
Higher upfront infrastructure cost
Individual services scalable

Fault tolerance through isolation

VVVVVV

Discussion - Regulatory and Compliance Needs

Consider special needs like:

o Regulatory compliance (e.g., financial industry).
o Security requirements.

Monolithic:

o Easier control and monitoring in regulated environments.

Distributed:

o Can complicate compliance but increases modularity and maintainability.

Example:

o Banking systems might use monolithic for core banking due to tight regulatory controls,
however distributed services for customer engagement modules.

Key Takeaways

»* Numerous architectural styles exist; each with unique characteristics and trade-offs.

** Partitioning styles: Technical vs. Domain.
« Deployment models: Monolithic vs. Distributed.

** Choice of style influenced by:
o Project goals.

o Scalability requirements.

o Complexity management.

o Cost implications.

	Slide 1: Architectural Styles
	Slide 2
	Slide 3: Introduction to Architectural Styles
	Slide 4: Categorizing Architectural Styles
	Slide 5: Partitioning by Technical Concerns
	Slide 6: Partitioning by Domain Concerns
	Slide 7: Comparing Technical vs. Domain Partitioning
	Slide 8: Deployment Models Overview
	Slide 9: Monolithic Architecture – Overview and Pros
	Slide 10: Monolithic Architecture - Limitations
	Slide 11: Distributed Architecture - Overview
	Slide 12: Distributed Architecture - Challenges
	Slide 13: Comparing Monolithic vs. Distributed
	Slide 14: Discussion - Regulatory and Compliance Needs
	Slide 15: Key Takeaways

