
COMP2511

Template	Pattern

Prepared	by
Dr.	Ashesh Mahidadia



Template	Pattern:	Motivation	and	Intent

• "Define	the	skeleton of	an	algorithm in	an	operation,	deferring some	steps	to	subclasses.	

Template	Method	lets	subclasses	redefine	certain	steps	of	an	algorithm	

without changing the	algorithm's	structure."	[GoF]

• A	template	Method defines	the	skeleton	(structure)	of	a	behavior	(by	implementing	the	

invariant	parts).

• A	template	Method	calls	primitive operations,	that	could	be	implemented	by	sub	classes	

OR	has	default	implementations	in	an	abstract	super	class.

• Subclasses	can	redefine	only	certain	parts	of	a	behavior	without	changing	the	other	parts	

or	the	structure of	the	behavior.

COMP2511:	Template	Pattern 2



Template	Pattern:	Motivation	and	Intent

v Subclasses	do	not		control	the	behavior	of	a	parent	class,	

a	parent	class	calls	the	operations	of	a	subclass	and	not	the	other	way	around.

v Inversion	of	control:

v when	using	a	library (reusable	classes),	we	call	the	code	we	want	to	reuse.

v when	using	a	framework (like	Template	Pattern),	we	write	subclasses	and	

implement	the	variant	code	the	framework	calls.

v Template	pattern	implement the common	(invariant)	parts	of	a	behavior	once	"and	

leave	it	up	to	subclasses	to	implement	the	behavior	that	can	vary."[GoF,	p326]	

v Invariant	behavior	is	in	one	class	(localized)

COMP2511:	Template	Pattern 3



Template	Pattern:	Structure

• Abstract	class	defines	a	templateMethod() to	

implement	an	invariant	structure	(behaviour)	

• templateMethod() calls	methods	defined	in	the	

abstract	class	(abstract	or	concrete)	- like	primitive1,	

primitive2,	etc.

• Default behaviour	can	be	implemented	in	the	

abstract	class	by	offering	concrete	methods

• Importantly,	sub	classes	can	implement	primitive	

methods	for	variant	behaviour

COMP2511:	Template	Pattern 4



Template	Pattern:	Structure

v "To	reuse	an	abstract	class	effectively,	subclass	writers	must	understand which	

operations	are	designed	for	overriding."	[GoF,	p328]

v Primitive	operations	:	operations	that	have	default	implementations	or	must	be	

implemented	by	sub	classes.

v Final	operations:	concrete	operations	that	cannot	be	overridden	by	sub	classes.

v Hook	operations:	concrete	operations	that	do	nothing	by	default	and	can	be	redefined	

by	subclasses	if	necessary.	This	gives	subclasses	the	ability	to	“hook	into”	the	algorithm	

at	various	points,	if	they	wish;	a	subclass	is	also	free	to	ignore	the	hook.	(see	the	

example)

COMP2511:	Template	Pattern 5



Template	Pattern: Example

COMP2511:	Template	Pattern 6



Template	Pattern:	Example

• From	https://refactoring.guru/design-patterns/template-method
COMP2511:	Template	Pattern 7



Template	Pattern:	Example

COMP2511:	Template	Pattern 8

Template	method

Step	1 Step	2

Step	3

Hook	

Step	4

Abstract	methods

Default	method

Default	methods



Template	Pattern:	Example

COMP2511:	Template	Pattern 9

Hook	

Step	2

Part	of	Step	1



Template	Pattern:	Example

COMP2511:	Template	Pattern 10



Template	Pattern:	Example

From	the	Head	First	Design	Book
COMP2511:	Template	Pattern 11



Template	Pattern:	
Example

COMP2511:	Template	Pattern 12
From	the	Head	First	Design	Book



Template	Pattern:	Example

COMP2511:	Template	Pattern 13From	the	Head	First	Design	Book



Template	Pattern:	
Example	(hook)

COMP2511:	Template	Pattern 14From	the	Head	First	Design	Book



Template	Pattern:	
Example	(hook)

COMP2511:	Template	Pattern 15
From	the	Head	First	Design	Book



Template	Vs	Strategy	Patterns

• Template Method works	at	the	class	level,	so	it’s	static.	

• Strategy works	on	the	object	level,	letting	you	switch	behaviors	at	runtime.

• Template	Method	is	based	on	inheritance:	it	lets	you	alter	parts	of	an	algorithm	

by	extending	those	parts	in	subclasses.	

• Strategy is	based	on	composition:	you	can	alter	parts	of	the	object’s behavior	by	

supplying	it	with	different	strategies	that	correspond	to	that	behavior	at	runtime.	

COMP2511:	Template	Pattern 16


