
COMP2511

☕ 8.2 - Iterator Pattern

In this lecture

Why?
Understand the concepts of iterators and iterables
Understand the motivation for the Iterator Pattern
 Discuss implementation of the Iterator Pattern in
different languages

How does a for loop actually work?

List<String> shoppingList = new ArrayList<String>(
 Arrays.asList(new String[] {
 "apple", "banana", "pineapple", "orange"
}));

for (String item : shoppingList) {
 System.out.println(item);
}

1
2
3
4
5
6
7
8

Under the hood

Iterator<String> iter = shoppingList.iterator();
while (iter.hasNext()) {
 String item = iter.next();
 System.out.println(item);
}

1
2
3
4
5

An iterator is an object that enables a programmer to
traverse a container
Allows us to access the contents of a data structure
while abstracting away its underlying representation
In Java, for loops are an abstraction of iterators
Iterators can tell us:

Do we have any elements left?
What is the next element?

Iterators

Custom Iterators

Traversing a Data Structure

Aggregate entities (Containers)
Stacks, Queues, Lists, Trees, Graphs, Cycles

How do we traverse an aggregate entity without exposing its
underlying representation?
Maintain abstraction and encapsulation
Initial solution - a method in the interface

What if we want multiple ways to traverse the container?

Abstracting the Traversal

Seperate Containers, Iterators and Algorithms
Allows for many possible ways of traversal
Avoid bloating interfaces with different traversal methods
Client (Algorithm) requests an iterator from the container
Container needs to provide a method for creating an iterator,
to show that it is iterable

Iterators vs Iterables

An iterable is an object that can be iterated over
All iterators are iterable, but not all iterables are iterators
For loops only need to be given something iterable

Iterator Invalidation

What happens when we modify something we're iterating
over?

numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9]

for number in numbers:
 if number == 3 or number == 4:
 numbers.remove(number)

print(numbers)

1
2
3
4
5
6
7

Design by Contract

In many languages, part of the postconditions of iterators is
that modifying the container in certain ways causes the
iterator to become invalidated (the behaviour of the iterator
is undefined)

Python
C++

Iterator Invalidation: Java

What happens when we modify something we're iterating
over?

List<Integer> numbers = new ArrayList<Integer>(
 Arrays.asList(new Integer[] {1, 2, 3, 4, 5, 6, 7, 8, 9}
));

for (Integer number : numbers) {
 if (number.equals(3) || number.equals(4)) {
 numbers.remove(number);
 }
}

System.out.println(numbers);

1
2
3
4
5
6
7
8
9
10
11

Iterator Invalidation: Java

What happens when we modify something we're iterating
over?

Exception in thread "main" java.util.ConcurrentModificationException
 at java.base/java.util.ArrayList$Itr.checkForComodification(ArrayLi
 at java.base/java.util.ArrayList$Itr.next(ArrayList.java:997)
 at dungeonmania.DungeonManiaController.main(IterExample.java:120)

1
2
3
4

Generators
A functional way of writing iterators
Defined via generator functions instead of classes
Example generator

def shopping_list():
 yield 'apple'
 yield 'orange'
 yield 'banana'
 yield 'pineapple'

for item in shopping_list():
 print(item)

1
2
3
4
5
6
7
8

Iterator Categories (C++)

Output (Write-only)
Input (Read-only)
Forward (most iterators, standard Java iterators)
Bidirectional (forward and backwards)
Random Access (iterators which function as arrays)

