COMP2511

Command and Facade Patterns

Prepared by
Dr. Ashesh Mahidadia



Design Patterns

Creational Patterns
** Factory Method
+* Abstract Factory
¢ Builder
*» Singleton

Structural Patterns
s Adapter
** Composite
** Decorator
** Facade

Behavioral Patterns
** |terator

** Observer

* State

* Strategy

» Template

* Visitor

* Command Pattern

L)

o0

4

L)

(R )

L)

L)

L)

o0

4

L)

(R

L)

L)

COMP2511: Pattern



The lecture slides use material from the websites
https://refactoring.guru/design-patterns/

and the Head First Design Patterns reference book.

COMP2511: Pattern



Command Pattern



Command Pattern

» The Command Pattern allows you to decouple the requester of an action from the object
that actually performs the action.

% A command object encapsulates a request (i.e., turn on light) on a specific object (say,
the living room light object).

** A command object is associated with an invoker (say a button).

» An invoker executes a predefined method on a command object, that in turn performs
actions as per the associated request.

s An invoker (say a button) is decoupled from the original request (turn on light).
% We can easily change / substitute a command object, resulting in a different action.

% Command pattern is a behavioral pattern, it transforms a request into an object, allowing
it to be passed as method arguments, serialized it, log it, queue it for delayed execution,
etc.

COMP2511: Command and Facade Patterns



Command Pattern

[
0
0
[
0
[

1
0

User Interface

Button

Menultem

update(2, "John Smith")

]
0

q -
)
!
>
)
0
|

| update(2, John Smith")

" update(2, John Smith") _ '

0

)
0
0
)
>
)
0
1

Business Logic
|

User Interface

Button

Menultem

V

Save

|
Command :

\ update(2,"John Smit

Business Logic

0
U
0
0
!

"

A

S —————

COMP2511: Command and Fagade Patterns

!
|
0
0
|
0
!




Command Pattern

copy = new CopyCommand(editor) Invoker
button.setCommand(copy) }
| - command | «interface»
- + setCommand(command) S
Client
- + executeCommand() + execute()
&
N e essccccccccceeee [}
AN ! l
L4 Command1 Command2
Receiver _
- receiver
- params
+ execute()

+ operation(a,b,c)

+ Command1(receiver, params)

f

+ execute()

receiver.operation(params)

COMP2511: Command and Facade Patterns




Command Pattern: Remote Control Example

public interface Command {

public void execute();

public class LightOffCommand implements Command {
Light light;

public LightOffCommand(Light light) {
this.light = light;
}

public void execute() {
light.off();

g

public class LightOnCommand implements Command {

Light light;

public LightOnCommand(Light light) {

this.light = light;
}

public void execute() {
light.on();

}

Stereo stereo;

}

public class StereoOnwWithCDCommand implements Command {

public StereoOnWithCDCommand(Stereo stereo) {
this.stereo = stereo;

public void execute() {
stereo.on();
stereo.setCD();
stereo.setVolume(1l);

COMP2511: Command and Facade Patterns

public class Light {
String location = "";

public Light(String location) {
this.location = location;

}

public void on() {
System.out.println(location + " light is on");

}

public void off() {
System.out.println(location + " light is off");

}




Command Pattern: Remote Control Example

public class RemoteControl {
// This is the invoker

Command[] onCommands;
Command[] offCommands;

public RemoteControl() {
onCommands = new Command[7];
offCommands = new Command[7];

Command noCommand = new NoCommand();

for (int 1 =0; 1 < 7; i++) {
onCommands[i] = noCommand;
offCommands[i] = noCommand;

}

public void setCommand(int slot, Command onCommand, Command offCommand) {
onCommands[slot] = onCommand;
offCommands[slot] = offCommand;

5

public void onButtonWasPushed(int slot) {
onCommands[slot].execute();

}

public void offButtonWasPushed(int slot) {
of fCommands[slot].execute();

}

COMP2511: Command and Facade Patterns



Command Pattern: Remote Control Example

Demo .....

COMP2511: Command and Facade Patterns

10



Facade Pattern

** Facade offers a simplified interface (facade) to hide all the complexity of one or more classes .
** Adapter Vs Facade Patterns:
o Adapter Pattern: Converts one interface to another (one a client is expecting)
o Facade Pattern: Makes an interface simpler to a complex class/classes (subsystem)
¢ Facades offers a simplified interface to the underlying class/classes.
¢ Importantly, facades do NOT “encapsulate” the subsystem classes.

*¢* The underlying subsystem classes and their methods are still available for direct use by clients. For
example, in the Home Theatre example, methods of a projector, amplifier, etc.

COMP2511: Command and Facade Patterns

11



Example: Home Theatre

To watch a movie, you need to perform a few tasks:

)
0’0

Turn on the popcorn popper

>

K/

*¢

Start the popper popping
Dim the lights

%o

*¢

—> StreamingPlayer o

% Put the screen down

% Turn the projector on ampitier ,

X pro) g That's a lot of
s Set the projector input to streaming player ofi) tlasses, a lot

. . . P of intevactions
% Put the projector on widescreen mode play) Intevactions,
& Turn th q lifi et} and a bi} set

X urn the sound amplifier on e elAudiof) o8 wlevtaces bo
s Set the amplifier to streaming player input toString) learn and use.
s Set the amplifier to surround sound Screen

s Set the amplifier volume to medium (5) :3,,0

o, 1oString()

K/

*¢

Turn the streaming player on
Projector

)
0’0

Start playing the movie

PopcomPopper
Lot of interfaces to deal with! o
% Projector, Screen, = T
Streaming Player, toStng) o
Theatre lights, Amplifier, i

Tuner, Theatre lights
COMP2511: Command and Facade Patterns 12



Example: Home Theatre with Facade class

HomeTheatreFacade class

© Ok time to create a
Facade for the home
theater system.To do this
we create a new class
HomeTheaterFacade,
which exposes a few
simple methods such as
watchMovie().

HomeTheaterFacade
watchMovie()

© TheFacade class treats
the home theater
components as a
on e e Your client code now calls
o methods on the home theater
wtchMonel Facade, not on the subsystem.
WatChMOVie() method
..................................... ' ca" o methOd’ watChMOVie()'
and it communicates with
the lights, streaming player,
projector, amplifier, screen, and
popcorn maker for us.

Complex subsystem

The subsystem {-,hc Z2
Fatade is simpibyird

T've got to have
my low-level access!

_Pay

Access to the Complex
subsystem lIs still possible

Former Yrcsidcn*a of the
Rushmore High Sehool
A/V Sciente Club.

COMP2511: Command and Facade Patterns

L

So now to watch a movie we just

A tlient of the
subsystem facade.

The Facade still leaves the subsystem
accessible so it can be used directly. If
you need the advanced functionality
of the subsystem classes, they are
available for your use.

13



Facade: Other Examples

T

Warehouse

N\

| Payment
Processing

Packaging

|

Suppliers

Delivery

Taxes >

VideoConverter

Application

Facade

Client —>

- linksToSubsystemObjects

- optionalAdditionalFacade

Additional
Facade

+ subsystemOperation()

~
4 T

+ anotherOperation()

I
’ ' >
\

» Sub Subsrtgm_l\y_y F
,’\\ s cl ubsystem ¥y |

/

-
~
/
S —-——

q g
\ - Subsystem class o
. Su .
~, class stem 5
R Subsystem [J Y !
‘ class
' class

class e

+ convertVideo(filename, format)

v

-
A ~4

A
\
\
\
v

VideoFile

AudioMixer

BitrateReader

CodecFactory

OggCompression
Codec

MPEG4
CompressionCodec

COMP2511: Command and Facade Patterns

From https://refactoring.guru/design-patterns/facade

14




Facade Pattern

¢ Important: A facade can add
domain knowledge to improve S Unified inberbace

client experiences (i.e., set light o ;\3 - | that is easier 4o use.
intensity depending on a time of a ?:J‘;ZSJC betame '
day) easier betause of

R the katade e

s A complex subsystem can have subsystem classes :
multiple facades, for different /’ :
clients. Move tompler subsystem:

R/

** The Facade Pattern decouples a
client interface from any one of the
subsystems. For example, you can
change a type of your streaming

player without changing the facade ' '
interface used by clients.

COMP2511: Command and Facade Patterns 15



End

COMP2511: Command and Facade Patterns

16



