
COMP2511

Command and Facade Patterns

Prepared by
Dr. Ashesh Mahidadia

Design Patterns

Creational Patterns
v Factory Method
v Abstract Factory
v Builder
v Singleton

Structural Patterns
v Adapter
v Composite
v Decorator
v Façade

COMP2511: Pattern 2

Behavioral Patterns
v Iterator
v Observer
v State
v Strategy
v Template
v Visitor
v Command Pattern

The lecture slides use material from the websites
https://refactoring.guru/design-patterns/

and the Head First Design Patterns reference book.

COMP2511: Pattern 3

Command Pattern

4COMP2511: Command and Façade Patterns

Command Pattern
v The Command Pattern allows you to decouple the requester of an action from the object

that actually performs the action.

v A command object encapsulates a request (i.e., turn on light) on a specific object (say,
the living room light object).

v A command object is associated with an invoker (say a button).

v An invoker executes a predefined method on a command object, that in turn performs
actions as per the associated request.

v An invoker (say a button) is decoupled from the original request (turn on light).

v We can easily change / substitute a command object, resulting in a different action.

v Command pattern is a behavioral pattern, it transforms a request into an object, allowing
it to be passed as method arguments, serialized it, log it, queue it for delayed execution,
etc.

COMP2511: Command and Façade Patterns 5

Command Pattern

COMP2511: Command and Façade Patterns 6

Command Pattern

COMP2511: Command and Façade Patterns 7

Command Pattern: Remote Control Example

COMP2511: Command and Façade Patterns 8

Command Pattern: Remote Control Example

COMP2511: Command and Façade Patterns 9

Command Pattern: Remote Control Example

COMP2511: Command and Façade Patterns 10

Demo …..

Façade Pattern

v Façade offers a simplified interface (façade) to hide all the complexity of one or more classes .

v Adapter Vs Façade Patterns:

o Adapter Pattern: Converts one interface to another (one a client is expecting)

o Façade Pattern: Makes an interface simpler to a complex class/classes (subsystem)

v Facades offers a simplified interface to the underlying class/classes.

v Importantly, facades do NOT “encapsulate” the subsystem classes.

v The underlying subsystem classes and their methods are still available for direct use by clients. For
example, in the Home Theatre example, methods of a projector, amplifier, etc.

COMP2511: Command and Façade Patterns 11

Example: Home Theatre
To watch a movie, you need to perform a few tasks:

v Turn on the popcorn popper
v Start the popper popping
v Dim the lights
v Put the screen down
v Turn the projector on
v Set the projector input to streaming player
v Put the projector on widescreen mode
v Turn the sound amplifier on
v Set the amplifier to streaming player input
v Set the amplifier to surround sound
v Set the amplifier volume to medium (5)
v Turn the streaming player on
v Start playing the movie

COMP2511: Command and Façade Patterns 12

Lot of interfaces to deal with!
v Projector, Screen,

Streaming Player,
Theatre lights, Amplifier,
Tuner, Theatre lights

Example: Home Theatre with Façade class

COMP2511: Command and Façade Patterns 13

HomeTheatreFacade class

Complex subsystem

Access to the Complex
subsystem Is still possible

Façade: Other Examples

COMP2511: Command and Façade Patterns 14

From https://refactoring.guru/design-patterns/facade

Façade Pattern

COMP2511: Command and Façade Patterns 15

v Important: A facade can add
domain knowledge to improve
client experiences (i.e., set light
intensity depending on a time of a
day).

v A complex subsystem can have
multiple facades, for different
clients.

v The Facade Pattern decouples a
client interface from any one of the
subsystems. For example, you can
change a type of your streaming
player without changing the façade
interface used by clients.

End

COMP2511: Command and Façade Patterns 16

