
COMP2511

Creational Pattern: 

Builder Pattern

Prepared by
Dr. Ashesh Mahidadia



Builder Pattern
Intent: Builder is a creational design pattern that lets you construct complex objects step 
by step. The pattern allows you to produce different types and representations of an object 
using the same construction code.
Problem: 
v Imagine a complex object that requires laborious, step-by-step 

initialization/construction of many fields and nested objects. 
v Such initialization/construction code is usually buried inside a monstrous constructor

with lots of parameters. 
v Or even worse: scattered all over the client code.

COMP2511: Creational Design Patterns 2



Builder Pattern
v The Builder pattern suggests that you extract the object construction code out of its 

own class and move it to separate objects called builders.
v The Builder pattern lets you construct complex objects step by step. 
v The Builder doesn’t allow other objects to access the product while it’s being built.
v Director: The director class defines the order in which to execute the building steps, 

while the builder provides the implementation for those steps.

COMP2511: Creational Design Patterns 3



Builder Pattern: Structure
v The Builder interface declares product 

construction steps that are common to all types 
of builders.

v Concrete Builders provide different 
implementations of the construction steps. 
Concrete builders may produce products that 
don’t follow the common interface.

v Products are resulting objects. Products 
constructed by different builders don’t have to 
belong to the same class hierarchy or interface.

v The Director class defines the order in which to 
call construction steps, so you can create and 
reuse specific configurations of products.

v The Client must associate one of the builder 
objects with the director.

COMP2511: Creational Design Patterns
4



Builder Pattern: Example
This example illustrates how you can reuse the 
same object construction code when, 

v building different types of cars, and 

v creating the corresponding manuals for 
them.

Example in Java (MUST read):
https://refactoring.guru/design-patterns/builder/java/example

COMP2511: Creational Design Patterns
5

https://refactoring.guru/design-patterns/builder/java/example


Relations with Other Patterns

v Many designs start by using Factory Method (less complicated and more customizable 

via subclasses) and evolve toward Abstract Factory, or Builder (more flexible, but more 

complicated).

v Builder focuses on constructing complex objects step by step. 

v Abstract Factory specializes in creating families of related objects. 

v Abstract Factory returns the product immediately, whereas Builder lets you run some 

additional construction steps before fetching the product.

COMP2511: Creational Design Patterns 6



Builder Pattern

For more information, read:
https://refactoring.guru/design-patterns/builder

COMP2511: Creational Design Patterns 7

https://refactoring.guru/design-patterns/builder


End 

COMP2511: Creational Design Patterns 8


