
COMP2511

Creational Pattern: 
Singleton Pattern

Prepared by
Dr. Ashesh Mahidadia



Creational Patterns
Creational patterns provide various object creation mechanisms, which increase 
flexibility and reuse of existing code.

v Factory Method 
o provides an interface for creating objects in a superclass, 

but allows subclasses to alter the type of objects that will be created.
v Abstract Factory

o let users produce families of related objects 
without specifying their concrete classes.

v Singleton
o Let users ensure that a class has only one instance, 

while providing a global access point to this instance.
v Builder

o let users construct complex objects step by step. The pattern allows users to 
produce different types and representations of an object using the same 
construction code.

COMP2511: Creational Design Patterns 2



Singleton Pattern

3COMP2511: Creational Design Patterns



Singleton Pattern
Intent: Singleton is a creational design pattern that lets you ensure that a class has 
only one instance, while providing a global access point to this instance.

Problem: A client wants to,
v ensure that a class has just a single instance, and 
v provide a global access point to that instance
Solution:
All implementations of the Singleton have these two steps in common:
v Make the default constructor private, to prevent other objects from using the new operator 

with the Singleton class.
v Create a static creation method that acts as a constructor. Under the hood, this method calls the 

private constructor to create an object and saves it in a static field. All following calls to this 
method return the cached object.

v If your code has access to the Singleton class, then it’s able to call the Singleton’s static method. 

v Whenever Singleton’s static method is called, the same object is always returned.
COMP2511: Creational Design Patterns 4



Singleton: Structure

v The Singleton class declares the static

method getInstance (1) that returns the 

same instance of its own class.

v The Singleton’s constructor should be 

hidden from the client code. 

v Calling the getInstance (1) method 

should be the only way of getting the 

Singleton object.

COMP2511: Creational Design Patterns 5



Singleton: How to Implement
v Add a private static field to the class for storing the singleton instance.

v Declare a public static creation method for getting the singleton instance.

v Implement “lazy initialization” inside the static method. 
o It should create a new object on its first call and put it into the static field. 
o The method should always return that instance on all subsequent calls.

v Make the constructor of the class private. 
o The static method of the class will still be able to call the constructor, but not the 

other objects.

v In a client, call singleton’s static creation method to access the object.

Example in Java (MUST read):
https://refactoring.guru/design-patterns/singleton/java/example

COMP2511: Creational Design Patterns 6

https://refactoring.guru/design-patterns/singleton/java/example


Singleton Pattern

For more information, read:
https://refactoring.guru/design-patterns/singleton

COMP2511: Creational Design Patterns 7

https://refactoring.guru/design-patterns/singleton


End 

COMP2511: Creational Design Patterns 8


