
COMP2511

Generics in Java
(Part 2)

Prepared by

Dr. Ashesh Mahidadia

Generics in Java: Java Tutorial

v Good introduction at the following web page, Oracle’s official Java Tutorial,
you must read all the relevant pages!

https://docs.oracle.com/javase/tutorial/java/generics/index.html

v The following lecture slides cover only some parts of the above tutorial,
however, you should read all the relevant sections (pages) in the above tutorial.

COMP2511: Generics and Collections in Java 2

https://docs.oracle.com/javase/tutorial/java/generics/index.html

Generics in Java (Recap)
Generics enable types (classes and interfaces) to be parameters when defining:

• classes,
• interfaces and
• methods.

Benefits
v Removes casting and offers stronger type checks at compile time.
v Allows implementations of generic algorithms, that work on collections of different types, can

be customized, and are type safe.
v Adds stability to your code by making more of your bugs detectable at compile time.

COMP2511: Generics and Collections in Java 3

Without Generics With Generics

Generic Types (Recap)

v A generic type is a generic class or interface that is parameterized over types.

v A generic class is defined with the following format:
class name< T1, T2, ..., Tn > { /* ... */ }

v The most commonly used type parameter names are:
v E - Element (used extensively by the Java Collections Framework)
v K - Key
v N - Number
v T - Type
v V - Value
v S,U,V etc. - 2nd, 3rd, 4th types

v For example,
Box<Integer> integerBox = new Box<Integer>();

OR
Box<Integer> integerBox = new Box<>();

COMP2511: Generics and Collections in Java 4

Multiple Type Parameters (Recap)

v A generic class can have multiple type
parameters.

v For example, the generic OrderedPair class,
which implements the generic Pair interface

COMP2511: Generics and Collections in Java 5

v Usage examples,

Pair<String, Integer> p1 = new OrderedPair<String, Integer>("Even", 8);
Pair<String, String> p2 = new OrderedPair<String, String>("hello", "world");
... ...
OrderedPair<String, Integer> p1 = new OrderedPair<>("Even", 8);
OrderedPair<String, String> p2 = new OrderedPair<>("hello", "world");
... ...
OrderedPair<String, Box<Integer>> p = new OrderedPair<>("primes", new Box<Integer>(...));

Generic Methods (Recap)
Generic methods are methods that introduce their own type parameters.

COMP2511: Generics and Collections in Java 6

The complete syntax for invoking this method would be:

Pair<Integer, String> p1 = new Pair<>(1, "apple");
Pair<Integer, String> p2 = new Pair<>(2, "pear");
boolean same = Util.<Integer, String>compare(p1, p2);

The type has been explicitly provided, as shown above.
Generally, this can be left out and the compiler will infer the type that is needed:

Pair<Integer, String> p1 = new Pair<>(1, "apple");
Pair<Integer, String> p2 = new Pair<>(2, "pear");
boolean same = Util.compare(p1, p2);

Bounded Type Parameters
v There may be times when you want to restrict the types that can be used as type

arguments in a parameterized type.
v For example, a method that operates on numbers might only want to accept instances

of Number or its subclasses.

COMP2511: Generics and Collections in Java 7

Multiple Bounds

v A type parameter can have multiple bounds:

< T extends B1 & B2 & B3 >

v A type variable with multiple bounds is a subtype of all the types listed in the bound.

v Note that B1, B2, B3, etc. in the above refer to interfaces or a class. There can be at

most one class (single inheritance), and the rest (or all) will be interfaces.

v If one of the bounds is a class, it must be specified first.

COMP2511: Generics and Collections in Java 8

Generic Methods and Bounded Type Parameters

COMP2511: Generics and Collections in Java 9

X - invalid

Valid

Generics, Inheritance, and Subtypes
v Consider the following method:

public void boxTest(Box<Number> n) { /* ... */ }

v What type of argument does it accept?

v Are you allowed to pass in
Box<Integer> or Box<Double> ?

v The answer is "no", because Box<Integer> and
Box<Double> are not subtypes of Box<Number>.

v This is a common misunderstanding when it comes to
programming with generics.

COMP2511: Generics and Collections in Java 10

Generic Classes and Subtyping
v You can subtype a generic class or interface by extending or

implementing it.

v The relationship between the type parameters of one class or interface
and the type parameters of another are determined by the extends and
implements clauses.

v ArrayList<E> implements List<E>, and List<E> extends Collection<E>.

v So ArrayList<String> is a subtype of List<String>,
which is a subtype of Collection<String>.

v So long as you do not vary the type argument,
the subtyping relationship is preserved between the types.

COMP2511: Generics and Collections in Java
11

Wildcards: Upper bounded
v In generic code, the question mark (?), called the wildcard, represents an unknown

type.
v The wildcard can be used in a variety of situations: as the type of a parameter, field, or

local variable; sometimes as a return type.
v The upper bounded wildcard, < ? extends Foo >, where Foo is any type, matches

Foo and any subtype of Foo .
v You can specify an upper bound for a wildcard, or you can specify a lower bound, but

you cannot specify both.

COMP2511: Generics and Collections in Java 12

Wildcards: Unbounded

v The unbounded wildcard type is specified using the wildcard character (?),
for example, List< ? >. This is called a list of unknown type.

COMP2511: Generics and Collections in Java 13

It prints only a list of Object instances;
it cannot print List<Integer>, List<String>,
List<Double>, and so on

To write a generic printList
method, use List<?>

Wildcards: Lower Bounded

v An upper bounded wildcard restricts the unknown type to be a specific type or a
subtype of that type and is represented using the extends keyword.

v A lower bounded wildcard is expressed using the wildcard character ('?'), following by
the super keyword, followed by its lower bound: < ? super A >.

v To write the method that works on lists of Integer and the super types of Integer, such
as Integer, Number, and Object, you would specify List<? Super Integer>.

v The term List<Integer> is more restrictive than List<? super Integer>.

COMP2511: Generics and Collections in Java 14

Wildcards and Subtyping

v Although Integer is a subtype of Number,
List<Integer> is not a subtype of List<Number> and,
these two types are not related.

v The common parent of
List<Number> and List<Integer> is
List<?>.

COMP2511: Generics and Collections in Java 15

End

COMP2511: Generics and Collections in Java 16

