COMP2511

Decorator Pattern

Prepared by
Dr. Ashesh Mahidadia

Decorator Pattern: Intent

» "Attach additional responsibilities to an object dynamically.
Decorators provide a flexible alternative to sub-classing for extending functionality."
[GOF]

e Decorator design patterns allow us to selectively add functionality to an object (not the
class) at runtime, based on the requirements.

* Original class is not changed (Open-Closed Principle).

* Inheritance extends behaviors at compile time, additional functionality is bound to all the
instances of that class for their life time.

* The decorator design pattern prefers a composition over an inheritance.
Its a structural pattern, which provides a wrapper to the existing class.

e Objects can be decorated multiple times, in different order, due to the recursion involved
with this design pattern. See the example in the Demo.

* Do not need to implement all possible functionality in a single (complex) class.

COMP2511: Decorator and Adapter Patterns 2

Decorator Pattern: Structure

** Client : refers to the Component interface. .
. . — Component = component
** Component: defines a common interface for Clien =1 - |
operation(}
Component1 and Decorator objects it component.
operation|),
< . . . { |
s* Componentl : defines objects that get e E—— \
decorated. operation (] operation{] - - |
¢ Decorator: maintains a reference to a A
. { |
Component object, and forwards requests to _— —— | g —
this component object (component.operation()) el operation() operation)
oaie addBehavior) addBehavior)
** Decoratorl, Decorator?2, ... :

Implement additional functionality
(addBehavior()) to be performed before and/or See the example in the Demo.

after forwarding a request.

COMP2511: Decorator and Adapter Patterns

Decorator Pattern: Structure

** Given that the decorator has the same
supertype as the object it decorates,

we can pass around a decorated object in place
of the original (wrapped) object.

** The decorator adds its own behavior either
before and/or after delegating to the object it
decorates to do the rest of the job.

From the book “Head First Design Pattern”.

Component t
Client F——= o Tener
operation(’ |
component.
Z} operation|),
[]
Component] Decorator \
operation (] operation{] - - |
[]
Sampl Decorator Decorator2
“orai operation|] operation|]
agram addBehavior)) | | addBehavior)

See the example in the Demo.

COMP2511: Decorator and Adapter Patterns

Decorator Pattern: Example

Beverage is an abstract elass,

subtlassed by all beverages

offeved in the tobfee shop:

The tost() methed is
abstract; subelassses

need o define their "\—?

own im?‘tmcn{:a{:ion-

_—7"\

Welcome to Starbuzz Coffee

Y =

The destviption instance vaviable
s set in eath subelass and holds

Beverage

i, deseription of the bcvcragc,,likc
- “Most Excellent Davk Roast”.

getDescription()

cosl()

The 5c{:Deeri‘>+,ion() method

veturns the deseviption.

I Other useful methods...

HouseBlend

DarkRoast Decaf

Espresso

cost()

cost()

f\

Each subtlass implements cost() 4o veturn the cost of the beverage.

cost() cost()

)

COMP2511: Decorator and Adapter Patterns

Beverage Welcome to Starbuzz Coffee

Decorator Pattern: Example [

getDescription()
cost()

I/ Other useful methods...

/

HouseBlendWithSteamedMilk DarkRoastWithSteamedM - EspressoWithSteameaMilk
ouseBlendWithSteamedMi arkRoa ea : e
andMocha andMocha DecafWithSteamedMilk

HouseBle andMocha cost()
cost() cost() costl)

Espress

DarkRoastWithSteamedMilk | Dec andCaramel
’ o:dearan::I ' andCaramel cost)| EspressoWithWhipandMocha

o cost() DecafWith
A DarkRoastWith Vermpranny - c

cost()

HouseBlendWi

cost()
and$ cost() DarkRoastWi cost) Dec cos!
cosl() DecafWithSoy

cost) “Touseorenay cost)
L-‘ DarkRoastWithSteamedMilk PacHvaIDteameE cost()

HouseBlendWith
—_1 cost) andSoy and" EspressoWith

|
[HouseBlendWithWhi — ol [DecafWith medMi
s P DarkRoastWithSteamedM E— SteamedMilk | | 1)

HouseBI cost() cost() Decsz
: _ cost() cost()
HouseBlendWithWhipandSoy | DarkRoastWie L Do cost()

cost() “ EspressownhStgamedMilk
andWhip

DecafWithSoyandMocha

[+]

cost()

DarkRoastWithSteamedM| DecafWithSteame

andithin _ : EspressoWithWhipandSoy
Each cost method computes the D ibsctBoy DecafWithWhipandSoy

cost of the coffee along with the = cost)
cosll
other condiments in the order i

Decorator Pattern: Example Welcome to Starbuzz Coffee

Beverage atts as owr -
abstract tomponent £13ss:

component

Beverage
description
getDescription()
costf)

I/ other useful methods

CondimentDecorator
getDescription()

DarkRoast

HouseBlend

cost() cost()

Espresso Decaf
cost() cost()
Milk
The ‘(:OMV' ConCYC‘hC Beverage beverage Beverage beverage
ComEonCh‘tS» one pev cost() cost)
totkee type getDescription()

Ry 727

And heve are our tondiment detorators; notice
‘U\cgnccd to implement not onl\/ tost() but also

getDeseription(). We'll see why in 3 moment...
COMP2511: Decorator and Adapter Patterns

Decorator Pattern: Example

Constructing a drink order with Decorators

Whip is a detorator, so it also
mivrors DarkRoast's type and
intludes a eost() method.

(You'll see how'!
— afew pages”

4

Motha ealls cost() on
. DarkRoast.

© Whip ¢alls cost() on Motha.

0 Fivst, we call tost() on the
oubmost detorator, Whip.

(4] DavkRoast veturns
|{:s COS£) qq CCNB-

O Whip adds its total, 10 cents, |
to the vesult from Mod\a; and

Q Mocha adds its cost, 20 tents,
veturns the final vesult—fl.29.

4o the vesult from DarkRoa's{:,
and veburns the new total, f 1.19.

COMP2511: Decorator and Adapter Patterns 8

Decorator Pattern: Code

Beverage beverage = new Espresso();

System.out.println(beverage.getDescription()
+ " $" + beverage.cost());

System.out.println(”

public double cost() {
double beverage cost = beverage.cost();
System.out.println("Whipe: beverage.cost() is: " + beverage cost);
System.out.println(" - adding One Whip cost of 0.10c ");
System.out.println(" - new cost is: " + (0.10 + beverage cost));

return 0.10 + beverage cost ;

Beverage beverage2 = new DarkRoast();

beverage2 = new Mocha(beverage2);
beverage2 = new Mocha(beverage2);
beverage2 = new Whip(beverage2);

System.out.println(beverage2.getDescription()
+ " $" + beverage2.cost());

System.out.println("----------““““““c---

Beverage beverage3 = new HouseBlend();

beverage3 = new Soy(beverage3);

beverage3 = new Mocha(beverage3);

beverage3 = new Whip(beverage3);

System.out.println(beverage3.getDescription()
+ " $" + beverage3.cost());

System.out.println(”

code
ead the example ¢ cloped in the lectures

d‘sgus\ieodér Jided for this week
an

public double cost() {
double beverage cost = beverage.cost();
System.out.println("Mocha: beverage.cost() is:
System.out.println(”
System.out.println(”

- adding One Mocha cost of 0.20c ");
- new cost is:

return 0.20 + beverage cost ;

COMP2511: Decorator and Adapter Patterns 9

“ + beverage cost);

“+ (0.20 + beverage cost));

Decorator Pattern: Java I/O Example

LineN umbcr,n?u{',g‘brcam is

also a tontrete detorator.
[t adds the ability 58

tount the line numbers as

it veads data.

A text file for reading,

Lomponent \ 1Shream
BubfevedinputStream is S&ﬁhﬁg“ur\:& ceam 3N \f::c'
3 tontrete detor ator. BY“Z&P“"";\\{ " bhese SNC us @ ; b\,us
BulferedInputStream adds oRhers T T o whiEh Lo ved

buffering behavior toa Lomponen
Fi\dn?u{’,g{:rcam: it buu:crs
input o improve ychomanu.

COMP2511: Decorator and Adapter Patterns

10

Decorator Pattern: Java I/O Example

Hcvc S
d-l:cvln‘?utg{:rcam
InputStream 1S an abs{:\rad’.
/\ detovator.
FilelnputStream StnngBuﬁerlnputStream

ByteArraylnputStream

\/_\/_,_/

FilterinputStream

| PushbackInputStream ' BufferedinputStream DatalnputStream

These [nputStreams act as the contrete F\ 7 / /)

- ators.
§:¢ z::;:v{:ss t;ir:caréllangj ::: ” And £inally, heve ave all our tontrete detorators
didn't show, like ObjectInputStream.

COMP2511: Decorator and Adapter Patterns

LineNumberinputStream

11

Decorator Pattern: Code

InputStream fl = new FilelnputStream(filename);
InputStream bl = new BufferedInputStream(fl);
InputStream lCasel = new LowerCaselnputStream(bl);
InputStream rotl3 = new Rotl3(bl);

while ((c = rotl3.read()) >= 0) {
System.out.print((char) c);

}

xam
Read the €
discussed/deve

ide
and also ProV!

COMP2511: Decorator and Adapter Patterns

ple Cod_e
\Oped in
4 for this week

the lectures:

12

Decorator Pattern:

* Demo ...

COMP2511: Decorator and Adapter Patterns

13

End

COMP2511: Decorator and Adapter Patterns

14

