
COMP2511
Composite	Pattern

Prepared	by
Dr.	Ashesh Mahidadia



Composite	Pattern

These	lecture	notes	use	material	from	the	wikipedia page	at:	https://en.wikipedia.org/wiki/Composite_pattern

and	

the	reference	book	“Head	First	Design	Patterns”.

2COMP2511: Composite Pattern



Composite	Pattern:	Motivation	and	Intent
• In	OO	programming,	a	composite	is	an	object	designed	as	a	composition	of	one-or-more	similar	
objects	(exhibiting	similar	functionality).	

• Aim	is	to	be	able	to	manipulate	a	single	instance	of	the	object	just	as	we	would	manipulate	a	
group	of	them.	For	example,
• operation	to	resize	a	group	of	Shapes	should	be	same	as	resizing	a	single Shape.	
• calculating	size	of	a	file	should	be	same	as	a	directory.

• No	discrimination	between	a	Single	(leaf)		Vs	a	Composite	(group)	object.
• If	we	discriminate	between	a	single	object	and	a	group	of	object,	
code	will	become	more	complex	and	therefore,	more	error	prone.	

COMP2511:	Composite	Pattern 3



Composite	Pattern:	More	Examples

A	text	document can	be	organized	as	part-whole	hierarchy	consisting	of	
• characters,	pictures,	lines,	pages,	etc.	(parts)	and	
• lines,	pages,	document,	etc.	(wholes).

• Display	a	line,	page	or	the	entire	document	(consisting	of	many	pages)	uniformly	using	the	same	
operation/method.

COMP2511:	Composite	Pattern 4

Calculate	the	total	price	of	an	individual	part	or	a	complete	subcomponent	(consisting	of	many	
parts)	without	having	to	treat	part	and	subcomponent	differently.

Chassis

Mainboard Disk

MemoryProcessor

subcomponent



Composite	Pattern:	Possible	Solution

• Define	a	unified Component interface for	both	
Leaf (single	/	part	)	objects	and Composite (Group	/	whole)	objects.

• A	Composite stores	a	collection	of	children	components	(either	Leaf and/or	Composite
objects).

• Clients	can	ignore	the	differences	between	compositions	of	objects	and	individual	objects,	this	
greatly simplifies	clients	of	complex	hierarchies	and	makes	them	easier	to	implement,	change,	
test,	and	reuse.	

COMP2511:	Composite	Pattern 5



Composite	Pattern:	Possible	Solution
• Tree	structures	are	normally	used	to	represent	part-whole	hierarchies.		A	multiway	tree	structure	
stores	a	collection	of	say	Components at	each	node	(children below),	to	store	Leaf objects	
and		Composite (subtree)	objects.	

• A Leaf object	performs	operations	directly	on	the	object.

• A Composite object	performs	operations	on	its	children,	and	if	required,	collects	return	values	
and	derives	the	required	answers.	

COMP2511:	Composite	Pattern 6

Code	Segment	from	the	Composite class



Implementation	Issue:	Uniformity vs	Type	Safety	
Two	possible	approaches	to	implement	child-related	operations	
(methods	like	add,	remove,	getChild,	etc.):	

COMP2511:	Composite	Pattern 7

Design	for		Type	Safety:	only	define	child-related	
operations	in	the	Composite class.

Design	for	Uniformity: include	all	child-related	
operations	in	the	Component interface.See	the	next	slide	for	more	details.		



Implementation	Issue:	Uniformity vs	Type	Safety	
Design	for	Uniformity

• include	all	child-related	operations	in	the	Component interface,	this	means	the	Leaf class	
needs	to	implement	these	methods	with	“do	nothing”	or	“throw	exception”.		

• a	client	can	treat	both	Leaf and	Composite objects	uniformly.	
• we	loose	type	safety	because	Leaf and	Composite types	are	not	cleanly	separated.	
• useful	for	dynamic	structures	where	children	types	change	dynamically	(from	Leaf to	
Composite	and	vice	versa),	and	a	client	needs	to	perform	child-related	operations	regularly.		
For	example,	a	document	editor	application.

Design	for		Type	Safety
• only	define	child-related	operations	in	the	Composite class
• the	type	system	enforces	type	constraints,	so	a	client	cannot	perform	child-related	
operations	on	a	Leaf object.

• a client	needs	to	treat	Leaf and	Composite objects	differently.	
• useful	for	static	structures	where	a	client	doesn’t	need	to	perform	child-related	operations	
on	“unknown”	objects	of	type	Component.	

COMP2511:	Composite	Pattern 8



Composite	Pattern:	Demo	Example

COMP2511:	Composite	Pattern 9

This example uses design for Uniformity (see composite.uniformity).
Sample code also includes design for Type Safety (see composite.typesafe).



COMP2511:	Composite	Pattern 10

Composite	Pattern:	Demo	Example



Demos	…

• Live	Demos	…

• Make	sure	you	properly	understand		the	demo	example	code	available	for	this	week.	

COMP2511:	Observer	Pattern 11



Summary

• The	Composite	Pattern	provides	a	structure	to	hold	both	individual	objects	and	
composites.

• The	Composite	Pattern	allows	clients	to	treat	composites	and	individual	objects	
uniformly.

• A	Component	is	any	object	in	a	Composite	structure.	Components	may	be	other	
composites	or	leaf	nodes.

• There	are	many	design	tradeoffs	in	implementing	Composite.	You	need	to	balance	
transparency/uniformity	and	type	safety	with	your	needs.

COMP2511:	Composite	Pattern 12

From	the	reference	book:	“Head	First	Design	Pattern”


