COMP2511
Composite Pattern

Prepared by
Dr. Ashesh Mahidadia

Composite Pattern

These lecture notes use material from the wikipedia page at: https://en.wikipedia.org/wiki/Composite pattern

and

the reference book “Head First Design Patterns”.

COMP2511: Composite Pattern 2

Composite Pattern: Motivation and Intent

* In OO programming, a composite is an object designed as a composition of one-or-more similar
objects (exhibiting similar functionality).

* Aim is to be able to manipulate a single instance of the object just as we would manipulate a
group of them. For example,

* operation to resize a group of Shapes should be same as resizing a single Shape.

 calculating size of a file should be same as a directory.

* No discrimination between a Single (leaf) Vs a Composite (group) object.

 If we discriminate between a single object and a group of object,
code will become more complex and therefore, more error prone.

COMP2511: Composite Pattern

Composite Pattern: More Examples

Calculate the total price of an individual part or a complete subcomponent (consisting of many
parts) without having to treat part and subcomponent differently.

subcomponent

Mainboard
Processor

A text document can be organized as part-whole hierarchy consisting of
» characters, pictures, lines, pages, etc. (parts) and
* lines, pages, document, etc. (wholes).

* Display a line, page or the entire document (consisting of many pages) uniformly using the same
operation/method.

COMP2511: Composite Pattern

Composite Pattern: Possible Solution

<<Interface>>
Component P > compositel
Client > Client :Component
+ operation1()
+ operation2()
RvAvV.S
"l = - leafl composite2 leaf2
Leaf Composite :Component :Component :Component
+ operation1() + operation1()
+ operation2() + operation2()
+ add(Component c)
+ remove(Component c)
tChild(int index): Component
+ getChild(int index): Componen leaf3 leaf4 leaf5
:Component :Component :Component

* Define a unified Component interface for both
Leaf (single / part) objects and Composite (Group / whole) objects.

A Composite stores a collection of children components (either Leaf and/or Composite
objects).

* Clients canignore the differences between compositions of objects and individual objects, this
greatly simplifies clients of complex hierarchies and makes them easier to implement, change,

test, and reuse.
COMP2511: Composite Pattern

Composite Pattern: Possible Solution

e Tree structures are normally used to represent part-whole hierarchies. A multiway tree structure
stores a collection of say Components at each node (children below), to store Leaf objects
and Composite (subtree) objects.

* ALeaf object performs operations directly on the object.

* AComposite object performs operations on its children, and if required, collects return values
and derives the required answers.

Code Segment from the Composite class

ArrayList<Component> children = new ArraylList<Component>();

@0verride
public double calculateCost() {
double answer = this.getCost();
for(Component ¢ : children) { e example
answer += c.calculateCost(); FOFmO"e'readth .« week
} code provided for this

return answer;

COMP2511: Composite Pattern

Implementation Issue: Uniformity vs Type Safety

Two possible approaches to implement child-related operations
(methods like add, remove, getChild, etc.):

/ <<lInterface>> \ / \
Component
Client p—p <<Interface>>

+ operation1() Component
+ operation2()
REVAVS Client P+ operation1()
. el 1+ operation2()
+ add(Component c)
, s 1+ remove(Component c)
Leaf Composite + getChild(int index): Component
+ operation1() + operation1() VN ..
+ operation2() + operation2()
+ add(Component c) v -
+ remove(Component c)
+ getChild(int index): Component Leat Composite
+ operationi() + operationi()
. . . + operation2() + operation2()
Design for Type Safety: only define child-related + add(Component c) + add(Component c)
. . . + remove(Component ¢) + remove(Component ¢)
ope rations in the Compos ite class. J + getChild(int index): Component + getChild(int index): Component
Design for Uniformity: include all child-related
See the next slide for more details. \operations in the Component interface. /

COMP2511: Composite Pattern 7

Implementation Issue: Uniformity vs Type Safety

Design for Uniformity

* include all child-related operations in the Component interface, this means the Leaf class
needs to implement these methods with “do nothing” or “throw exception”.

* aclient can treat both Leaf and Composite objects uniformly.
* we |loose type safety because Leaf and Composite types are not cleanly separated.
» useful for dynamic structures where children types change dynamically (from Leaf to
Composite and vice versa), and a client needs to perform child-related operations regularly.
For example, a document editor application.
Design for Type Safety
* only define child-related operations in the Composite class

* the type system enforces type constraints, so a client cannot perform child-related
operations on a Leaf object.

e aclient needs to treat Leaf and Composite objects differently.

 useful for static structures where a client doesn’t need to perform child-related operations
on “unknown” objects of type Component.

COMP2511: Composite Pattern

Composite Pattern: Demo Example

<<Interface>>
Component

Client —

+ nameString()

+ calculateCost()

+ add(Component c)

+ remove(Component ¢)

+ getChild(int index): Component

RVAVS
- N
- ~

Leaf

Composite

+ nameString()
+ calculateCost()

+ add(Component c)
+ remove(Component ¢)
+ getChild(int index): Component

+ nameString()

+ calculateCost()

+ add(Component c)

+ remove(Component ¢)

+ getChild(int index): Component

Read the example €
the lectures, and al

so provi

ode discussed/developed in

ded for this week

chasis

:Client

Component
Component
Component
mainboard.
mainboard

Component

mainboard =
processor

memory

.add(memory) ;

chasis
.add(mainboard);

chasis.add(disk);
»| Chasis System.out.println("[0]
i System.out.println("[0]
j ‘*‘ System.out.println(“[1]
System.out.println("[1]
mainboard disk
:Component :Component
System.out.println("[2]
System.out.println("“[2]

e

\

processor
:Component

:Component

memory

Il+
ll+

‘l+
ll+

Il+
ll+

new Composite(“"Mainboard”, 100);
new Leaf("Processor", 450);

new Leaf("Memory", 80);
add(processor);

new Composite(“Chasis", 75);

Component disk = new Leaf("Disk", 50);

processor.nameString());
processor.calculateCost());

mainboard.nameString());
mainboard.calculateCost());

chasis.nameString());
chasis.calculateCost());

This example uses design for Uniformity (see composite.uniformity).
Sample code also includes design for Type Safety (see composite.typesafe).

COMP2511: Composite Pattern

9

public class MenuTestDrive {
public static void main(String args[]) {
MenuComponent pancakeHouseMenu =
new Menu("PANCAKE HOUSE MENU", "“Breakfast");
MenuComponent dinerMenu =
new Menu("DINER MENU", "“Lunch");
MenuComponent cafeMenu =
new Menu("CAFE MENU", "Dinner");
MenuComponent dessertMenu =
new Menu("DESSERT MENU", "Dessert of course!");
MenuComponent coffeeMenu = new Menu("COFFEE MENU", “S

MenuComponent allMenus = new Menu("ALL MENUS", "All m
1

allMenus.add(pancakeHouseMenu);
allMenus.add(dinerMenu);
allMenus.add(cafeMenu);

pancakeHouseMenu.add(new MenuItem(
"K&B's Pancake Breakfast”,
“Pancakes with scrambled eggs, and toast”,
true,
2.99));
pancakeHouseMenu.add(new Menultem(
“Regular Pancake Breakfast",
“Pancakes with fried eggs, sausage"”,
false,
2.99));

Composite Pattern: Demo Example

sed/ geveloped "

mp\e co o ed fOV
Read the eXSa and also DVO\"d

Tures
ihe \eC

allMenus.print();
f—

ALL MENUS, A1l menus combined

K&B's Pancake Breakfast(v), 2.99
-- Pancakes with scrambled eggs, and toast
Regular Pancake Breakfast, 2.99
-- Pancakes with fried eggs, sausage
Blueberry Pancakes(v), 3.49
-- Pancakes made with fresh blueberries, and blueberry syrup
wWaffles(v), 3.59
-- Waffles, with your choice of blueberries or strawberries

DINER MENU, Lunch
Vegetarian BLT(v), 2.99
-- (Fakin') Bacon with lettuce & tomato on whole wheat
BLT, 2.99
-- Bacon with lettuce & tomato on whole wheat
Soup of the day, 3.29
-- A bowl of the soup of the day, with a side of potato salad
Hotdog, 3.05

E—

COMP2511: Composite Pattern 10

Demos ...

e Live Demos ...

* Make sure you properly understand the demo example code available for this week.

COMP2511: Observer Pattern

11

Summary

* The Composite Pattern provides a structure to hold both individual objects and
composites.

 The Composite Pattern allows clients to treat composites and individual objects
uniformly.

A Component is any object in a Composite structure. Components may be other
composites or leaf nodes.

* There are many design tradeoffs in implementing Composite. You need to balance
transparency/uniformity and type safety with your needs.

From the reference book: “Head First Design Pattern”

COMP2511: Composite Pattern 12

