COMP2511
State Pattern

Prepared by
Dr. Ashesh Mahidadia

State Pattern

These lecture notes are from the wikipedia page at: https://en.wikipedia.org/wiki/Finite-state _machine

And

the reference book “Head First Design Patterns”.

COMP2511: State Pattern

Finite-state Machine

* A finite-state machine (FSM), is an abstract machine that can be in exactly one of a
finite number of states at any given time.

* the finite-state machine can change from one state to another in response to some
external inputs.

* the change from one state to another is called a transition.

* An finite-state machine is defined by
e a list of its states
* the conditions for each transition

e jts initial state

* Finite-state machine also refer to as finite-state automaton, finite automaton, or
state machine

COMP2511: State Pattern 3

Automata theory

[Combinational logic

\Finite-state machine

\ Pushdown automaton

\Turing Machine

COMP2511: State Pattern

Example: coin-operated turnstile

Push Coin
Push Coin
Current State Input | Next State Output

coin | Unlocked | Unlocks the turnstile so that the customer can push through.
Locked

push | Locked None

coin | Unlocked | None
Unlocked

push | Locked When the customer has pushed through, locks the turnstile.

State Transition Table: shows for each possible state, the transitions between them
(based upon the inputs given to the machine) and the outputs resulting from each input
COMP2511: State Pattern

State Machines: Simple examples

* vending machines, which dispense products when the proper
combination of coins is deposited,

* elevators, whose sequence of stops is determined by the floors
requested by riders,

e traffic lights, which change sequence when cars are waiting,

* combination locks, which require the input of combination numbers
in the proper order.

COMP2511: State Pattern

State Machine: Terminology

* A state is a description of the status of a system that is waiting to execute
a transition.

A transition is a set of actions to be executed when a condition is fulfilled or
when an event is received.

Identical stimuli trigger different actions depending on the current state.

* For example,

e when using an audio system to listen to the radio (the system is in the "radio" state),
receiving a "next" stimulus results in moving to the next station.

* when the system is in the "CD" state, the "next" stimulus results in moving to the next track.

Often, the following are also associated with a state:
e an entry action: performed when entering the state, and
* an exit action: performed when exiting the state.

COMP2511: State Pattern

Representations

* The most common representation is shown below:

State transition table

Current
state State A State B State C
Input

Input X
Input Y State C
Input Z

COMP2511: State Pattern

State Machines for Ul

* Examples ...

COMP2511: State Pattern

Gumball Machine!

i ollev needs to
' £hink the gumball machn_nc tontr
HC\’;S;/:, :cw:;ly:\eg yorcan im%lemen{: his in Java £°L, uls(' Wi '::ay
::ra;iding more behavior in the futuve, so “w’ need to keep
Migh ty Gumball, Inc. design as flexible and maintainable as possibie;
thretheGu'-r‘n:)fagl Ma:;hine 1 Mag\\{:\[éumba“ EnsihCCVS
is Never Halftmp

From the reference book
“head First Design Patterns”

State machines 101

How are we going to get from that state diagram to actual code? Here’s a quick introduction to implementing state machines:

Was a"ba\\
No G 38 | hove ave the states — four in total
ok ot

= (2) Next, create an instance variable to hold the current state, and define values for each of the states:

Leb's iust call “Out of Gumballs”
“Cold Out” for short \

= (D First, gather up your states:

d
static int SOLD OUT = 0; Heve's each state vepresente

final
Read the example 35 3 wnique integer-.

. final static int NO QUARTER = 1;
code provided for , o -
final static int HAS QUARTER = 2;

th|5 Week final static int SOLD = 3;

.and here’s an instante vaviable that holds the

int state = SOLD OUT; é—’\ turrent state. We'll go ahead and set it to “Sold
- Ou{‘.” sinte the mathine will be un‘i”cd when if's

First taken out of its box and turned on.

= (3 Now we gather up all the actions that can happen in the system:

These attions are '
$he aumball mathine s

“\“Yb \ww t“m c"ahk é/ i“{,'caca('c - thc h\m&s
ejects quarter you tan do with it.

dispense

From the reference book /’)

“ . . ” Dis?cnsc IS movre O‘F an internal
head FIrSt DeSIgn Patterns Lookmg at the diagra"‘; 3"""“"5 any °£ attion the mathine invokes on i{:sclf.

these attions tauses @ state transition.

11

= (@) Now we create a class that acts as the state machine. For each action, we create a method that uses conditional statements to determine what behavior is appropriate in each state. For instance, for the
insert quarter action, we might write a method like this:

public void insertQuarter() { Eath possible

state is thetked

if (state == HAS QUARTER) { with a tonditional
- d‘/ statement.

System.out.println("You can't insert another quarter");

and exhibits the ay‘nr»o‘rr'\a&,c
.Eckav‘-a for eath poss! e

state = HAS QUARTER;
System.out.println("You inserted a quarborf)_;\
Read the example

_but ¢an also transition to other states,
code provided for [relow it (wbabe w= SR just as depicted in the diagram.

} else if (state == NO_QUARTER) ({ g

thls Week System.out.println("You can't insert a quarter, the machine is sold out");
} else if (state == SOLD) {

System.out.println("Please wait, we're already giving you a gumball");

Here we're talking
about a common technique:
modeling state within an object
by creating an instance variable to hold
the state values and writing conditional
code within our methods to handle
the various states.

From the reference book
“head First Design Patterns”

With that quick review, let’s go implement the Gumball Machine!

Read the example
code provided for
this week

From the reference book
“head First Design Patterns”

public void ejectQuarter() { Now, if the ustomer tries to vemove the quarter..

if (state == HAS_QUARTER) { £~ I Ehere is a quarter, we
System.out.println("Quarter returned") ; veturn it and 90 back to the
state = NO_QUARTER; 4/_\ NO QM ARTER s{,a%,c

} else if (state == NO_QUARTER) ({ s
System.out.println("You haven't inserted a quarter") ; Otherwise, if theve isn't

} else if (state == SOLD) { &———— one we tan't give it back.
System.out.println("Sorry, you already turned the crank");

} else if (state == SOLD_OUT) {

System.out.println("You can't eject, you haven't inserted a quarter yet");

}

} & You tan't ejcc{: if the mathine is sold I£ the customer Jus{
out, it doesn't aceept quarters/ turned the erank, we
can't give a vefund; he
The customer tries to tuen the erank.. alveady has the gumball |
public void turnCrank() {

if (state == SOLD) { L Someone’s trying to cheat the mathine.
System.out.println("Turning twice doesn't get you another gumball!") ;

} else if (state == NO_QUARTER) ({

System.out.println("You turned but there's no quarter"); — We need av

} else if (state == SOLD_OUT) { quarter first
System.out.println("You turned, but there are no gumballs"); F ;

} else if (state == HAS_QUARTER) { We cant deliver
System.out.println("You turned..."); qumballs; there
state = SOLD; are none.

g (el T gl They get a qumball. Change

} the state to SOLD and call the
Called to dispense a gumball. machine’s dispense() method.
public void dispense() { wc,u o bhe

if (state == SOLD) { S
System.out.println("A gumball comes rolling out the slot"); [SOLD s’ca{’.i\) e
count = count - 1; "em @ 5“"‘\’3 *

if (count == 0) { Here's wheve we handle the
; " "y . re's W
System.out.println("Oops, out of gumballs!"); “°:+‘ " 5um\:>a||5“ tondition: £

state = SOLD_OUT; !
fhis was the last one, we se

} else {
state = NO_QUARTER; the mathine's state 1o SOLD_
} - OUT; otherwise, weve batk to
} else if (state == NO_QUARTER) { not having 3 '\ua‘f{""'
System.out.println("You need to pay first");
P SSN L (SEateies LR OUN) €~ None of these should ever
System.out.println("No gumball dispensed") ; “— happen, but i‘F Bevid
} else if (state == HAS QUARTER) { L Gl

.)
we give ‘em an error, not

System.out.println("No gumball dispensed") ;
a gumball.

}
}
// other methods here like toString() and refill ()

CUIVIF£LO 41 1. OldLE FdLLciii

13

The new design

It looks like we’ve got a new plan: instead of maintaining our existing code, we're going to rework it to encapsulate state objects in their own classes and
then delegate to the current state when an action occurs.

We’re following our design principles here, so we should end up with a design that is easier to maintain down the road. Here’s how we’re going to do it:

» (D First, we’re going to define a State interface that contains a method for every action in the Gumball Machine.

» (@ Then we’re going to implement a State class for every state of the machine. These classes will be responsible for the behavior of the
machine when it is in the corresponding state.

» (D Finally, we’re going to get rid of all of our conditional code and instead delegate to the State class to do the work for us.

public class GumballMachine {

final static int SOLD_OUT = 0; j
final static int NO_QUARTER = 1; - hine, we update
= F—— Inthe QuwballMathine,

final stati int HAS QUARTER = 2;
inal static in Q! Sade bou“

final static int SOLD = 3;

av, exte :
simil ar\(iY\h the other ob‘)cc{:sv-
int state = SOLD_OUT; integers
int count = 0; \
Old tode public class GumballMachine {
State soldOutState;
State noQuarterState;
State hasQuarterState;
State soldState;
New tode
State state = soldOutState;
int count = 0;

From the reference book
“head First Design Patterns”

All the State objeets are eveated
and assigned in the tonstruttor.

This now holds @
Ghate objgt{, not

COMP2511: State Pacein an ey 14

public class GumballMachineTestDrive { Load it up with five
39»}.\3‘\". total
public static void main(String(] args) { hL 3
Gu=ballMachine gumballMachine = new GumballMachine(5);

System.out,.println(gusballMachine); £— Print out the state of the mathine. ~—~——

e [t
gumballMachine.insertQuarter(); 4 Throw 3 quarter in e
b gusballMachine. turnCrank () ; G Turn the trark; we should aet our aumball
QU

© O
30 O tste of the =2
U .= o7} System.out.println(gusballMachine) ; & Print cub the state of the mathine, g3 —
Q >
Nay
2
S

S 7
8 gumballMachine.insertQuarter () ; C——— Throwa quarter in %, = /7
~ Q . gumballMachine.ejectQuarter(); —— Ak for it back i, —
g Q S gusballMachine. turnCrank() ; & Turn the trank; we thouldn't aet our h};n'{lJI‘) 7
/’/_”_ﬂ“

(] g System.out,.println(gumballMaching) ; T ——— Pnb cut the state of the mathine, 33m \.,/

~ @] :
gu=ballMachine.insertQuarter(); &—— Throw a T«*"’ttf " \
gumballMachine. turnCrank () ; &—— Turn the trank; we sheuld et owr qumball |
gusballMachine.insertQuarter () ; E——— Throw 3 qarter in _/\l
gumballMachine. turnCrank () ; e— Turn the trank; we should et our qumball
gusballMachine.ejectQuarter() ; & — Ask for 2 quarter back we didn'€ put in / /

. . Print out Ehe state of the mathine, dgain __—
System.out.println(gumballMachine); &—
gumballMachine.insertQuarter() ; €—— Throw TWO auarters in //
gumballMachine.insertQuarter() : T | Ly L) ’/’,.e”’////
rn the Lrank; thould aet mball
gumballMachine.turnCrank () ; . aaE T st Aol o —
: o <

q’\ublllchh*M.;nloerunrtor() g <_/‘;‘10w bor the stress testing @
gumballMachine, turnCrank () ; v

gumballMachine.insertQuarter () ;
gumballMachine. turnCrank () ;

System.out.println(gumballMachine); &—— Print that mathine state one more time. —

From the reference book

“head First Design Patterns”
COMP2511: State Pattern

Fie £t Wodom Mep mightygurmdall com

$java GumballMachineTestDrive

Mighty Gumball, Inc.

Java-enabled Standing Gumball Model #2004
Inventory: 5 gumballs

Machine is waiting for quarter

You inserted a quarter
You turned...
A gumball comes rolling out the slot

Mighty Gumball, Inc.

Java-enabled Standing Gumball Model #2004
Inventory: 4 gumballs

Machine is waiting for quarter

You inserted a guarter
Quarter returned
You turned but there's no quarter

Mighty Gumball, Inc.

Java-enablaed Standing Gumball Model #2004
Inventory: 4 gumballs

Machine is waiting for quarter

You inserted a guarter

You turned...

A gumball comes rolling out the slot
You inserted a quarter

You turned...

A gumball comes rolling out the slot
You haven't inserted a quarter

Mighty Gumball, Inc,

Java-enabled Standing Gumball Model B2004
Inventory: 2 gumballs

Machine is waiting for quarter

You inserted a gquarter

You can't insert another quarter

You turned...

A gumball comes rolling out the slot

You inserted a quarter

You turned,..

A gumball comes rolling out the slot

Oops, out of gumballs!

You can't insert a quarter, the machine is sold out
You turned, but there are no gumballs

Mighty Gumball, Inc.

Java-enabled Standing Gumball Model #2004
Inventory: 0 gumballs

Machine is sold out

Demo ...

* Demo of Gumball, from the reference book “Head First Design
Patterns”.

COMP2511: State Pattern

16

BULLET POINTS

» Unlike a procedural state machine, the State Pattern represents state as a full-blown class.

= The Context gets its behavior by delegating to the current state object it is composed with.
= By encapsulating each state into a class, we localize any changes that will need to be made.
= The State and Strategy Patterns have the same class diagram, but they differ in intent.

= Strategy Pattern typically configures Context classes with a behavior or algorithm.

= State Pattern allows a Context to change its behavior as the state of the Context changes.

= State transitions can be controlled by the State classes or by the Context classes.

= Using the State Pattern will typically result in a greater number of classes in your design.

= State classes may be shared among Context instances.

= The State Pattern allows an object to have many different behaviors that are based on its internal state.

From the reference book

“head First Design Patterns”
COMP2511: State Pattern

17

