
&203�����
�'HVLJQ�3ULQFLSOHV

©	Aarthi	Natarajan,	2018 1

Ashesh Mahidadia

Ashesh Mahidadia
COMP2511
Refactoring

Refactoring

The	process	of	restructuring (changing	the	internal	

structure	of	software)	software	to	make	it	easier	to	

understand and	cheaper to	modify without changing	its	

external,	observable	behaviour

©	Aarthi	Natarajan,	2018 2

• Refactoring	improves	design	of	software

• Refactoring	Makes	Software	Easier	to	Understand

• Refactoring	Helps	You	Find	Bugs

• Refactoring	Helps	You	Program	Faster

• Refactoring	helps	you	to	conform	to	design	principles	and	avoid

design	smells

Why	should	you	refactor?

©	Aarthi	Natarajan,	2018 3

Tip: When you find you have to add a feature to a program, and the

program's code is not structured in a convenient way to add the

feature, first refactor the program to make it easy to add the feature,

then add the feature

Refactor when:

– You	add	a	function	(swap	hats	between	adding	a	function	and

refactoring)

– Refactor	When	You	Need	to	Fix	a	Bug

– Refactor	As	You	Do	a	Code	Review

When	should	you	refactor?

©	Aarthi	Natarajan,	2018 4

• Duplicated	Code
– Same	code	structure	in	more	than	one	place	or

– Same	expression	in	two	sibling	classes

• Long	Method
• Large	Class (when	a	class	is	trying	to	do	too	much,	it	often	shows

up	as	too	many	instance	variables)

• Long	Parameter	List
• Divergent	Change (when	one	class	is	commonly	changed	in

different	ways	for	different	reasons)

• Shotgun	Surgery (The	opposite	of		divergent	change,	when	you

have	to	make	a	lot	of	little	changes	to	a	lot	of	different	classes

Common	Bad	Code	Smells

©	Aarthi	Natarajan,	2018 5

What	is	wrong	with	the	design?	
Is	it	wrong	to	write	a	quick	and	dirty	solution	OR	is	it	an	aesthetic	

judgment	(dislike	of	ugly	code)	…

• Overly	long	statement()method	,	poorly	designed	that	does

far	too	much,	tasks	that	should	be	done	by	other	classes				(Code
Smell:	Long	Method)

• What	if	customer	wanted	to	generate	a	statement	in	HTML?		-

Impossible	to	reuse	any	of	the	behaviour	of	the	current	statement

method	for	an	HTML	statement.	(Code	Smell:		Duplicated	code)

• What	about	changes?

– What	happens	when	“charging	rules”	change?

– what	if	the	user	wanted	to	change	the	way	the	movie	was

classified

• The	code	is	a	maintenance	night-mare		(Design	smell:	Rigidity)

The	Video	Rental	Example

©	Aarthi	Natarajan,	2018 6

Apply	a	series	of	fundamental	refactoring	techniques:

Technique	#1:		Extract	Method
• Find	a	logical	clump	of	code	and	use	Extract	Method.

Which	is	the	obvious	place?	 the	switch statement

• Scan	the	fragment	for	any	variables	that	are	local	in	scope	to	the

method	we	are	looking	at

(Rental r and	thisAmount)
• Identify	the	changing	and	non-changing	local	variables

• Non-changing	variable	can	be	passed	as	a	parameter

• Any	variable	that	is	modified	needs	more	care,	if	there	is	only	one,

you	could	simply	do	a	return

Improving	the	design

©	Aarthi	Natarajan,	2018 7

Technique #2: Rename variable
• Is renaming worth the effort? Absolutely

• Good code should communicate what it is doing clearly, and
variable names are a key to clear code. Never be afraid to change

the names of things to improve clarity.

Tip
Any fool can write code that a computer can understand. Good
programmers write code that humans can understand.

Improving	the	design

©	Aarthi	Natarajan,	2018 8

#3: Move method
• Re-examine method calculateRental() in class Customer
• Method uses the Rental object and not the Customer object

• Method is on the wrong object

Tip
Generally, a method should be on the object whose data it uses

Improving	the	design

©	Aarthi	Natarajan,	2018 9

What	OO	principles	do	Extract	Method and	Move	Method	use?

They	make	code	reusable	through	Encapsulation and	Delegation

But,	isn’t	encapsulation	about	keeping	your	data	private?

The	basic	idea	about	encapsulation	is	to	protect	information	in	one	

part	of	your	application	from	other	parts	of	the	application,	so	

– You	can	protect	data

– You	can	protect	behaviour	– when	you	break	the	behaviour	out

from	a	class,	you	can	change	the	behaviour	without	the	class

having	to	change

And	what	is	delegation?

– The	act	of	one	object	forwarding	an	operation	to	another	object

to	be	performed	on	behalf	of	the	first	object

Improving	the	design

©	Aarthi	Natarajan,	2018 10

#4: Replace Temp With Query

• A technique to remove unnecessary local and temporary variables

• Temporary variables are particularly insidious in long methods

and you can loose track of what they are needed for

• Sometimes, there is a performance price to pay

Improving	the	design

©	Aarthi	Natarajan,	2018 11

#5: Replacing conditional logic with Polymorphism

• The switch statement – an obvious problem, with two issues

• class Rental Is tightly coupled with class Movie - a switch

statement based on the data of another object – not a good
design

• There are several types of movies with its own type of charge,

hmm… sounds like inheritance

Improving	the	design

©	Aarthi	Natarajan,	2018 12

• A base class Movie class with method getPrice() and sub-
classes NewRelease, ChildrenMovie and Regular

• This allows us to replace switch statement with polymorphism

• Sadly, it has one flaw...a movie can change its classification during

its life-time

Improving	the	design

©	Aarthi	Natarajan,	2018 13

• Composition	– reuse	behaviour	using	one	or	more	classes

with	composition

• Delegation:	delegate	the	functionality	to	another	class

…this	is	the	second	time,	this	week	we	have	said,	we	need	
something	more	than	inheritance

So, next ...

• Design Principle: Favour composition over inheritance

• More refactoring techniques to solve our “switch” problem
– Replace type code with Strategy/State Pattern

– Move Method

– Replace conditional code with polymorphism

So,	what	options	are	there	besides	inheritance	?

©	Aarthi	Natarajan,	2018 14

COMP2511

Refactoring

Prepared	by

Ashesh Mahidadia

Refactoring:	Motivation
v Code	refactoring	is	the	process	of	restructuring existing	computer	code	without	

changing its	external	behavior.

v Originally	Martin	Fowler	and	Kent	Beck	defined	refactoring	as,	

“A	change	made	to	the	internal	structure	of	software	to	make	it	easier	to	understand	
and	cheaper	to	modify	without	changing	its	observable	behavior…	It	is	a	disciplined	
way	to	clean	up	code	that	minimizes	the	chances	of	introducing	bugs.”

v Advantages:	improved	code	readability,	reduced	complexity;	improved	maintenance	
and	extensibility

v If	done	well,	helps	to	identify	hidden or	dormant bugs	or	vulnerabilities,	by	simplifying	
code	logic.

v If	done	poorly,	may	change	external	behavior,	and/or	introduce	new	bugs!

v Refactoring	is	different to	adding	features	and	debugging.

COMP2511:	Refactoring 2

Refactoring:	Motivation
v Refactoring	is	usually	motivated	by	noticing	a	code	smell	(possible	bad	design/coding	

practices).

v Code	Smell	is	a	hint that	something	might	be	wrong,	not a	certainty.	

v Identifying	a	Code	Smell	allows	us	to	re-check the	implementation	details	and	consider	
possible	better alternatives.	

v Automatic	unit	tests	should	be	set	up	before	refactoring	to	ensure	routines	still	behave	
as	expected.

v Refactoring	is	an	iterative cycle	of	making	a	small	program	transformation,	testing it	to	
ensure	correctness,	and	making	another	small	transformation.

COMP2511:	Refactoring 3

Software	Maintenance	

v Software	Systems	evolve	over	time	to	meet	new	requirements	and	features.

v Software	maintenance	involve:

• Fix	bugs
• Improve	performance	

• Improve	design

• Add	features
v Majority	of	software	maintenance	is	for	the	last	three	points!

v Harder to	maintain code	than	write	from	scratch!	

v Most of	the	development	time is	spent	in	maintenance!

v Good	design,	coding	and	planning	can	reduce	maintenance	pain	and	time!

v Avoid code	smells	to	reduce	maintenance	pain	and	time!

COMP2511:	Refactoring 4

Code	Smells:	Possible	Indicators

v Duplicated	code

v Poor	abstraction	(change	one	place	→	must	change	others)

v Large	loop,	method,	class,	parameter	list;	deeply	nested	loop

v Class	has	too	little	cohesion

v Modules	have	too	much	coupling

v Class	has	poor	encapsulation

v A	subclass	doesn’t	use	majority	of	inherited	functionalities

v A “data	class”	has	little	functionality

v Dead	code

v Design	is	unnecessarily	general

v Design	is	too	specific

COMP2511:	Refactoring 5

Low-level	refactoring
v Names:

v Renaming	(methods,	variables)
v Naming	(extracting)	“magic”	constants

v Procedures:
v Extracting	code	into	a	method
v Extracting	common	functionality	(including	duplicate	code)	into	a	class/method/etc.
v Changing	method	signatures

v Reordering:
v Splitting	one	method	into	several	to	improve	cohesion	and	readability	

(by	reducing	its	size)
v Putting	statements	that	semantically	belong	together	near	each	other

v For	more,	see		http://www.refactoring.com/catalog/

COMP2511:	Refactoring 6

IDEs	support	low-level	refactoring

v Renaming:

• Variable,	method,	class.

v Extraction:

• Method,	constant

• Repetitive	code	snippets	
• Interface	from	a	type

v Inlining:	method,	etc.

v Change	method	signature.

v Warnings	about	inconsistent	code.

COMP2511:	Refactoring 7

Higher-level	refactoring	

v Refactoring	to	design	patterns.

v Changing	language	idioms	(safety,	brevity).

v Performance	optimization.	

v Generally	high-level	refactoring	is	much	more	important,	
but	unfortunately	not well-supported	by	tools.

COMP2511:	Refactoring 8

Code Smells

2

© Aarthi Natarajan, 2018

Smells : Design aspects that violate fundamental design
principles and impact software quality
Smells occur at different levels of granularity

– Code Smells: Structures in implementation of code such
as large methods, classes with multiple responsibilities,
complex conditional statements that lead to poor code

– Design Smells: Design aspects at a higher level of
abstraction (class level abstractions) such as classes with
multiple responsibilities, refused bequest

Regardless of the granularity, smells in general indicate
violation of software design principles, and eventually lead
to code that is rigid, fragile and require “refactoring”

Code and Design Smells

© Aarthi Natarajan, 2018

Bloaters: Code, Methods and classes that have grown in size, that
they are hard to work with

– Long Method, Large Class, Long Parameter List, Data Clumps
OO Abusers: Result from incorrect or incomplete application of OO
principles

– Switch statements, Refused Bequest
Change Preventers: Code changes are difficult (rigid code)

– Divergent change, Shot Gun Surgery
Dispensables: Code that is pointless and unnecessary

– Comments, Data Class, Lazy Class, Duplicate code
Couplers: Excessive coupling between classes

– Feature Envy, Inappropriate intimacy, Message Chains

Smells

© Aarthi Natarajan, 2018

Fix smell, long method
• Reduce length of a method body via Extract Method

– More readable, Less code duplication
– Isolates independent parts of code, - errors are less likely

• If local variables and parameters interfere with extracting a method, use
– Replace Temp With Query
– Introduce Parameter Object
– Preserve Whole Object

• If the above doesn’t work, try moving the entire method to a separate
object via Replace Method with Method Object

• Replace Method with Method Object
• Conditional operators and loops are a good clue that code can be moved

to a separate method.

Smell: Long Method

© Aarthi Natarajan, 2018

- More readable code (
The new method
name should describe
the method's purpose
)

- Less code duplication,
more reusability

- Isolates independent
parts of code,
meaning that errors
are less likely

- A very common
refactoring technique
for code smells

Refactoring Techniques – Extract Method

© Aarthi Natarajan, 2018

– Methods contain a repeating group of parameters, causing
code duplication

– Consolidate these parameters into a separate class
• Also helps to move the methods for handling this data
• Beware, if only data is moved to a new class and

associated behaviours are not moved, this begins to
smell of a Data Class

– Eliminates smell such as Long Parameter List, Data Clumps,

Primitive Obsession, Long Method

Refactoring Techniques: Introduce Parameter Object

© Aarthi Natarajan, 2018

Often, we place the result of an expression in a local variable for later
use in the code
With Replace Temp With Query we:
• Move the entire expression to a separate method and return

the result from it.
• Query the method instead of using a variable
• Reuse the new method in other methods

• Eliminates smell such as Long Method, Duplicate Code

Refactoring Technique: Replace Temp With Query

double calculateTotal() {
 double basePrice = quantity * itemPrice;
if (basePrice > 1000) {
 return basePrice * 0.95;
}
else {
 return basePrice * 0.98;
}
}

double calculateTotal() {
 if (basePrice() > 1000) {
 return basePrice() * 0.95; }
else {
 return basePrice() * 0.98; } }
double basePrice() {
 return quantity * itemPrice;
}
}

© Aarthi Natarajan, 2018

• Having all the phone details in class Customer is not a
good OO design and also breaks SRP

• Refactor into two separate classes, each with its
appropriate responsibility

Refactoring Technique: Extract Class

© Aarthi Natarajan, 2018

• Problem:
• Similar to Long Method
• Usually violates Single Responsibility Principle
• May have

– A large number of instance variables
– Several methods

• Typically lacks cohesion and potential for duplicate code smell
Solution:
• Bundle group of variables via Extract Class or Extract Sub-Class

Smell: Large Class

© Aarthi Natarajan, 2018

Problem: Calling a query method and passing its results as the
parameters of another method, while that method could call the
query directly
• Too many parameters to remember
• Bad for readability, usability and maintenance

Solution:
• try placing a query call inside the method body via replace

parameter with method and remove parameters with change
method signature

• Eliminates smell such as Long Method, Duplicate Code

Code Smell: Long Parameter List

© Aarthi Natarajan, 2018

Problem:
• Different parts of the code contain identical groups of variables

e.g., fields in many classes, parameters in many method
signatures

• Can lead to code smell Long Parameter List

Solution: Move the behaviour to the data class via Move Method
• If repeating data comprises the fields of a class, use Extract

Class to move the fields to their own class.
• If the same data clumps are passed in the parameters of

methods, use Introduce Parameter Object to set them off
as a class.

• If some of the data is passed to other methods, think about
passing the entire data object to the method instead of just
individual fields Preserve Whole Object will help with this.

Code Smell: Data Clumps

© Aarthi Natarajan, 2018

Problem:
• A subclass uses only some of the methods and properties

inherited from its parents
• The unneeded methods may simply go unused or be redefined

and give off exceptions
• Often caused by creating inheritance between classes only by

the desire to reuse the code in a super-class

Code Smell: Refused Bequest

© Aarthi Natarajan, 2018

Solution:
• If inheritance makes no sense and the subclass really does have

nothing in common with the superclass, eliminate inheritance in
favour of Replace Inheritance with Delegation

• If inheritance is appropriate, but super class contains fields and
methods not applicable to all classes, then consider the following
options
– Create a new subclass
– Apply Push Down Field to move field relevant only to subclass

from superclass
– Apply Push Down Method to move behaviour from super class to

sub class, as behaviour makes sense only to sub class
– Often, you may apply an Extract Sub-Class Class to combine the

above steps

Code Smell: Refused Bequest

© Aarthi Natarajan, 2018

class Camel does not use field model. It
should be pushed down to class Car

public abstract class Transport {
 // Push Down Field
 private String model;
 // Push Down Method
 public String getModel() throws Exception
 {
 return model;
 }
 ...
}
public class Car extends Transport { ... }
public class Camel extends Transport {
 ...
 public String getModel() {
 throw new NotSupportedException();
 }
}
public abstract class Transport {
 ...
}

Refused Bequest Example

// Use Push Down Field to move field and
// Push Down Method to move behaviour
// only relevant to sub class
// from super class to sub class

public abstract class Transport {
 ...
}
public class Car extends Transport
{
 private String model;
 public String getModel()
 {
 return model;
 }
 ...
}
public class Camel extends Transport
{
 ...
}

© Aarthi Natarajan, 2018

Code Fragments look similar
• If the same code is found in two or more methods in the same class:

use Extract Method and place calls for the new method in both places
• If the same code is found in two subclasses of the same level:

– Use Extract Method for both classes, followed by Pull Up Field for
the fields used in the method that you are pulling up.

– If the duplicate code is inside a constructor, use Pull Up Constructor
Body

– If the duplicate code is similar but not completely identical, use Form
Template Method

– If two methods do the same thing but use different algorithms, select
the best algorithm and apply Substitute Algorithm

• If duplicate code is found in two different classes:
– If the classes are not part of a hierarchy, use Extract SuperClass in

order to create a single superclass for these classes that maintains all
the previous functionality

Code Smell: Duplicate Code

© Aarthi Natarajan, 2018

Problem: A method that is more interested in a class other than the
one it actually is
• Invokes several methods on another object to calculate some value
• Creates unnecessary coupling between the classes

Solution: A goal of OO design is to put the methods with its
associated data
- So the method must moved to the relevant class via Move Method
• If only part of a method accesses the data of another object,

use Extract Method followed by Move Method to move the part in
question

• If a method uses functions from several other classes, first
determine which class contains most of the data used. Then place
the method in this class along with the other data.

Code Smell: Feature Envy

© Aarthi Natarajan, 2018

Divergent Change: One class is changed in different ways for
different reasons
• Solution: Any change to handle a variation should change a single

class, and all the typing in the new class should express the
variation.

• To clean this up you identify everything that changes for a
particular cause and use Extract Class to put them all together

Shot Gun Surgery: A small change in the code forces lots of little
changes to different classes
• Solution:

– Use Move Method or Move Field to put all the changes into a
single class

– Often you can use Inline Class to bring a whole bunch of
behaviour together.

• Divergent change is one class that suffers many kinds of changes,
and shotgun surgery is one change that alters many classes.

Code Smell: Divergent Change, Shot Gun Surgery

© Aarthi Natarajan, 2018

Problem: Classes that just have attributes with setters and getters
and no behaviour
One of the goals of OO design is to put behaviour where the data is

Solution: Move the behaviour to the data class via Move Method

Code Smell: Data Classes

© Aarthi Natarajan, 2018

Problem: Classes that aren’t doing much to justify their existence
(maintenance overhead)

Subclasses without any overridden methods or additional fields can be lazy
classes as well

Solution:
• Move the data (postcode) from lazy class PostCode to the class

Address
• Delete the lazy class

Code Smell: Lazy classes

© Aarthi Natarajan, 2018

Problem: Switch statements are bad from an OO design point of view

Solution: Replace switch statements with a polymorphic solution
based on Strategy Pattern applying a series of refactoring techniques
(Extract Method, Move Method, Extract Interface etc., Refer lecture
demo for complete solution)

Code Smell: Switch Statements

© Aarthi Natarajan, 2018

Move Field/Method
Extract Class/Inline Class
Extract Method
Inline Method/Temporary Variable
Replace Temp with Query
Replace Method with Method Object
Rename Method
Substitute Algorithm
Introduce Parameter Object
Preserve Whole Object
Extract Sub Class/Super Class/Interface
Extract Method
Pull Up Field/Method/Constructor Body
Form Template Method
Replace Inheritance with Delegation
Replace Conditional with Polymorphism

List of Refactoring Techniques to be familiar

© Aarthi Natarajan, 2018

https://refactoring.guru/refactoring/smells
https://www.refactoring.com/catalog/

Useful Links

