COMP 2511
Object Oriented Desigh &
Programming

Story so far,
Basic OO principles
Abstraction, Encapsulation, Inheritance, Polymorphism
Basic refactoring techniques

Extract method, Rename variable, Move Method, Replace
Temp With Query

This week
OO design principles
e Encapsulate what varies
* Program to an interface, not an implementation
* Favour composition over inheritance
Design Patterns
e Strategy and State Patterns

© Aarthi Natarajan, 2018

Remember, knowing
concepts like abstraction,
inheritance, and polymorphism do
not make you a good object oriented
designer. A design guru thinks about
how to create flexible designs that
are maintainable and that can
cope with change.

A simple Duck Simulator App

A game that shows a large variety of duck species swimming
and making quacking sounds

e What we need is a base class Duck and sub-classes
MallardDuck, RedheadDuck for the different duck
species

Duck
All ducks quack and swim, the = quack()
supertlass takes ave of the swim() _
implementation code. display{) &—— The displayl) methed is
: ke
/| OTHER duck-ike methods... abstrat, ince all dv
subbypes look different
AN
et
a0 e MallardDuck RedheadDuck ypes o 4K
12 e Loks of oV Dutk tlass
e X ﬁ:-jd‘ —— | display() { display() { herit From the
e 0 pena o Il looks like amallard) Il looks like a redhead)
getel Ly \o¥
foe ™
e

© Aarthi Natarajan, 2018 4

But, now we need ducks that fly

e How hard can that be?

e Justadd a 1y () method to the class Duck and all sub-types
will inherit it

Duck
quack()
swim()
ais pl)
295 2y
p ﬁ;mh - I OTHER duck-like methods...
. i

MallardDuck RedheadDuck oiner Dtk byres
display() { display() {
ik oks like a mallard il ooks like a redhead }

© Aarthi Natarajan, 2018 5

Design Flaw...

* A localised update to the code caused a non-local side effect
(flying rubber ducks)
 What normally is thought of as a great use of

inheritance for the purpose of “reuse” actually didn’t
turn out so well, when it comes to maintenance

Duck
quack()
N L:H. . S'ﬁmﬂ
el .'# 1 b display()
T e T gtk > | fiyl)
G g 1/ OTHER duck-ike methods...
E\ﬂ.:'-.'\."\fﬂ e L-T_.-,‘,‘.r -
W E|_'|1"°'__ -
o A e,
ae®" / T \
MallardDuck RedheadDuck RubberDuck L auaths
: - Ruber duks aon ™
display() { display() { quack() { L I () s oeveridder
I/ looks like a mallard i looks like a redhead Il overridden to Squeak 5o ”:{'::‘U;H.F--
i aueak
'I, ':, } e \

display() {
I looks like a rubberduck
}

© Aarthi Natarajan, 2018

Solution 1...

e Solution 1:

— We could simply override fly() method to do nothing, just as the
quack() method was overridden

— But, what happens, when more different types of ducks were
added that didn’t quack or fly

© Aarthi Natarajan, 2018 7

Solution 2...

e Solution 2:
— Need a cleaner way, so that only some ducks fly and some

qguack. How about an interface?

could take the fly() out of the
Duck superclass, and make a
Flyable() interface with a fiy()

method. That way, only the ducks that
. are supposed to fly will implement that
Ok interface and have a fly() method.. and
o) I might as well make a Quackable, too,

Quockable since not all ducks can quack.

© Aarthi Natarajan, 2018

Solution 2...

* Using interfaces, all sub-classes that fly implement
flyable interface and that quack implement Quackable
interface

* But, completely destroys code reuse — every class must
implement fly() method (perhaps not an issue in Java 8),
but what if there are more than two kinds of flying
behaviour among ducks that fly.

* Change every class where behaviour has changed? —
maintenance night-mare

* Need a design pattern to come riding on a white horse
and save the day.

© Aarthi Natarajan, 2018 9

* |s there a way to build software so that when we
need to change it, we could do so with the least
possible impact on the existing code?

Solution

Design Principle #3:

ldentify aspects of your code that varies and
“encapsulate” and separate it from code that stays the
same, so that it won’t affect your real code.

* By separating what changes from what stays the same, the
result is fewer unintended consequences from code
changes and more flexibility in your software

 Another way to think about this principle: take the parts
that vary and encapsulate them, so that later you can alter
or extend the parts that vary without affecting those that

don’t.

© Aarthi Natarajan, 2018 11

So, let us pull out the duck behaviour from
the duck class

We know that fly() and quack() are the parts of the
Duck class that vary across ducks.

To separate these behaviors from the Duck class, we’ll
pull both methods out of the Duck class and create a
new set of classes to represent each behavior.

The Dutk elass is shill the S'-.l'fﬂ'ri'.lliisi
of all dutks, but we are pulling out

behaviors and V aricus behavior .
Lhe fly and sack be : Lations are 9oi™
o dhem ko another dass | g eathget mplementIHon
putking them mbo another Now Flying and quackind €3 ¥ Lo hve heve

5{,\".1‘.4}"1 Fheiv own et cpi: lasses

)

' Pull out what varies -

'QUCJ(E'ﬂ&a

© Aarthi Natarajan, 2018

12

* How are we going to design the set of classes that
implement the fLy and quack behaviour?

Design Principle #4:

Program to a an interface, not to an
implementation

© Aarthi Natarajan, 2018

13

* Program to an interface, really means “program to a
super-type” i.e., the declared type of the variable
should be a super-type (abstract class or interface)

—e.g., Dog d = new Dog(); d.bark(); // programming
to an implementation

— Animal a = new Dog(); a. makeSound(); //
programming to an interface

* What we want is to exploit polymorphism by
programming to a super-type so that actual run-time
object isn’t locked into the code

Programming to a super-type

Previously,

— A behaviour was locked into a concrete implementation in the
Duck class or a specialised implementation in the sub-class

— Either way, we were locked into using a specific
implementation

— There was no room for changing that behaviour
Now,
— Use an interface to represent the behaviour

— Implement a set of separate “behaviour” classes that
implement this interface

— Associate a duck instance with a specific “behaviour”
class

— The Duck classes won’t need to know any of the
oriiiplementation details for their own behaviour e

Implementing the Behaviours

Here, there are two interfaces, FlyBehavior and QuackBehavior along with set of
classes that implement each concrete behaviour

Game thing heve for the :E:z
Qau *)\a't bcha‘"‘-'m we have an \h*ik()
=T ot yat el 3 00
““Ew;‘s glasse* "".Y\“s&. need ¥ wethod that needs o D€
A\EHL 2 o dasses 37y g mevted:
f w"\ \t:?, tne Ry ™ /
w o
<<intedace>> <<intedace>>
FlyBehavior QuackBehavior
) Queckd
FlyWithwings || FiyNoWay Quack Squeak MuteQuack
0 { fyO{ quack) { quack()}{ quack() {
V implemeants duck fying // do nathing - can’t #y! implemants duck quacking I/ rubber duckie squaak I do nothing - can1quack!
} } }

Pusey i¢ ?\
And ey, /K reall, thay
s i Y v x*.
Have . b . all dy, ks z;:c "“f"”' ntati, i Tael Quatks that sque guadks Bt nalte
n""ﬂ £ g .‘P/e'“"'f : nEhy no sound at all
\Vih&& orall d“(ks &60" °'F

e
© Aarthi Natarajan, 2018 16

Integrating Duck behaviour with the Duck instance

[nstante varidbles hod a referente to

The behavior variables are 5 s?ct.'l-F'lc. behavior ok vunbine.

detlared as the behavior
FlyBohavior flyBehavior ~~
QuackBehavior quackBehavior

These methods veplace [e ack)

fy () and "ILHM swim{)
display()

/1 OTHER duckike methods...

Define two instance variables in the Duck class

Implement performQuack() and performFly() that delegate the quacking and
flying behavior to other objects

3. Assign the instance variables the right behavior

ubli lags MallardDuck nds Duck { to
B o cla ar ck exte ck | \ Mihrdpﬂk s bhe &ua::- f:;.ﬁﬂk
public MallardDuck() { E T adleits quatk, 50 ﬁ:&ﬂgw bhe
quackBehavior = new Quack(); - ealled, bhe resporst 1 k Dhju.'q:
flyBehavior = new FlyWithWings(); ‘su,;.:k ' dthﬂﬁahd to the Ruat
| #\‘ and we ot 3¥¢3 qpatk:
Remember, MallardDuek inherits the quack— P it wes T;Hw;,lc}-.wimﬁi a its
E‘:E:HLE :'n]; iig‘ﬁﬂﬂv’nw instante variables FHB‘-]"' suior yTe:

public void display() f{
System.out.println{*I'm a real Mallard duck”);

© Aarthi Natarajan, 2018 17

Setting behaviour dynamically

1. Create two setter methods setFlyBehavior() and
setQuackBehavior() inside class Duck

2. To change a duck’s behavior at run-time, call the duck’s setter
method for that behavior

public abstract class Duck {

// Add setter methods to change behavior at run-time
public void setFlyBehavior(FlyBehavior f) {
this.flyBehavior =f ;

¥

public void setQuackBehavior(QuackBehavior q) {
this.quackBehavior = q;
}

}

© Aarthi Natarajan, 2018 18

Our complete design

Think about the different relationships - I1S-A, HAS-A, IMPLEMENTS

Client makes wse of an Encapsulated fly behavior
ercapsvlated family of algorithms ————
for both Flying and quacking HAS-A | o[£ ath
T\"‘“v' o: % e\“aq\oﬂ
Client p— s Gay ok
RySutuvar NEeh avitr ! : as . ,*)\”s
QuachSuturd s QuchSeh avic ¢ i A‘f’ﬂ
aing I nephinints duk Hing
i) F' /
e Quack()
_
:“M'm Encapsulated quack behavior
TOTHER duckd oo et . “«:m
IS-A .
IMPLEMENTS
My reDuck [waaa Dok Rubber Duck Do coyDuck
deghay) dspkn() LECE AN degkn(){
¥ lockes o rol e} 1ok Boaa nadhd } 1 ok B @ ubbarchck ¥ ook B @ oy dck)

© Aarthi Natarajan, 2018

19

HAS-A can be better than IS-A

Each duck has a fly behaviour and has a quack behaviour.
Haven’t we heard of this relationship?

COMPOSITION

Instead of inheriting their behaviour, the ducks get their
behaviour by being composed with the right behaviour
objects and delegate to the behaviour objects

This allows you to encapsulate a family of algorithms
Enables you to “change behaviour” at run-time

Design Principle #5:
Favour composition over inheritance

© Aarthi Natarajan, 2018 20

Our first design pattern

 We have just applied our first design pattern to design our
Duck app

STRATEGY PATTERN

e This allows you to encapsulate a family of algorithms
 Enables youto “change behaviour” at run-time

Design Pattern #1: Strategy Pattern

This pattern defines a family of algorithmes,
encapsulates each one

© Aarthi Natarajan, 2018 21

Design pattern

e A design pattern is a tried solution to a commonly
recurring problem

* Original use comes from a set of 250 patterns
formulated by Christopher Alexander et al for

architectural (building) design
A Pattern Language

Towns -Buildings - Construction

* Every pattern has
— A short name

— A description of the context
— A description of the problem

Christopher Alexander

- A prescription for d SO|Ution Sara Ishikawa - Murray Silverstein

Max Jacobson - Ingrid Fiksdahl-King
Shiomo Angel

© Aarthi Natarajan, 2018 22

Design pattern

* |n software engineering, a is a general
repeatable solution to a commonly occurring
problem in software design

* A design patternis
— Represents a template for how to solve a problem

— Captures design expertise and enables this
knowledge to be transferred and reused

— Provide shared vocabularies, improve
communications and eases implementation

— Is not a finished solution, they give you general
solutions to design problems

How to use Design Patterns?

Using Design Patterns is essentially an “art &
craft”

* Have a good working knowledge of patterns
e Understand the problems they can solve

 Recognhise when a problem is solvable by a
pattern

© Aarthi Natarajan, 2018 24

Design Patterns Categories

e Behavioural Patterns
e Structural Patterns
e Creational Patterns

© Aarthi Natarajan, 2018

25

Pattern #1: Strategy Pattern

* Motivation

— Need a way to adapt the behaviour of an algorithm at
runtime

* |ntent

— Define a family of algorithms, encapsulate each one, and
make them interchangeable

— Strategy pattern is a behavioural design pattern that lets the
algorithm vary independently from the context class using it

© Aarthi Natarajan, 2018 26

Strategy Pattern: Implementation

Context - =< interface ==

strate gy | Strategy IStrategy
Behaviolnterta il
+zome_method): void ' em&ml&a&cﬂ(}[o
Lo

__________ ([L 4 |- L 4 _|-L 4

[[I

| | |

Conc reteStrateqyA ConcreteStrateqyB ConcreteStrateqyC

+Behaviolnterface(} void +Behaviolnterface(void +Behaviolnterface void

© Aarthi Natarajan, 2018
Image http://www.oodesign.com/

Strategy Pattern: Uses, Benefits, Liabilities
* Applicability
— Many related classes differ in their behaviour

— A context class can benefit from different variants of an
algorithm

— A class defines many behaviours, and these appears as
multiple conditional statements (e.g., if or switch). Instead,
move each conditional branch into their own concrete
strategy class

e Benefits

— Uses composition over inheritance which allows better
decoupling between the behaviour and context class that
uses the behaviour

* Drawbacks
— Increases the number of objects
wiClent must be aware of different strategies

Strategy Pattern: Examples

. Sorting a list (quicksort, bubble sort, merge-sort)

_ Encapsulate each sort algorithm into a

concrete strategy class

_ Context class decides at run-time, which

sorting behaviour is needed

. Search (binary search, DFS, BFS, A*)

© Aarthi Natarajan, 2018 29

Next,
— State Pattern
— Reuvisit our video rental example

Recall our Video Rental Example from Week 03

Movie

geiCharge

JAN

Regqular Movie Childrens Movie New Release Movie

getCharge getCharge getCharge

* A movie can change its classification during its life-time,
hence the price of the movie would vary

* The design above is not right, for the same reason we
cannot have fly () inside the Duck class

© Aarthi Natarajan, 2018 31

Movie

Price
title: String 1
—, o TRy 2w
qetCharge{days: int) i.:‘r:"“'g:“g)w(:"; nts (da y
getFrequentRenterPoints(days:int) S TP S
/“/‘\3
/1N
1 [;
| ChildrensPrice | I ReqularPrice
getCharge{daysim) getCharge(daysint)
NewReleasePrice
getCharge(days:int)
getFrequentRerterPorns (days: int)
{ Rental Customer
‘ daysRented: int W L gy
| statemen()

getCharged)
getFrequentRenterPoints{)

e Remember our design principles

— encapsulate what varies
— compose and delegate

RamiStatementi)
getTotalCharge()
getTotalFrequentRenter Pomts()

e Refactoring Techniques that support these principles
— Replace Type Code with Strategy/State Pattern

— Replace conditional logic with polymorphism

© Aarthi Natarajan, 2018

32

Summary

 Knowing OO basics does not make you a good
OO designer

* Good OO designs are reusable, extensible and
maintainable

OO Basics OO Principles

* Abstraction * Principle of least OO Patterns
 Encapsulation knowledge — talk only to Strategy
* Inheritance your friends o State

e Polymorphism * Encapsulate what varies

* Favour composition over
inheritance

 Program to an interface,

not an implementation
© Aarthi Natarajan, 2018

33

