
COMP 2511
Object Oriented Design &

Programming

1 © Aarthi Natarajan, 2018

Story so far,

 Basic OO principles

Abstraction, Encapsulation, Inheritance, Polymorphism

Basic refactoring techniques

Extract method, Rename variable, Move Method, Replace
Temp With Query

This week

OO design principles

• Encapsulate what varies

• Program to an interface, not an implementation

• Favour composition over inheritance

Design Patterns

• Strategy and State Patterns

© Aarthi Natarajan, 2018 2

© Aarthi Natarajan, 2018 3

• A game that shows a large variety of duck species swimming
and making quacking sounds

• What we need is a base class Duck and sub-classes
MallardDuck, RedheadDuck for the different duck
species

A simple Duck Simulator App

© Aarthi Natarajan, 2018 4

• How hard can that be?

• Just add a fly() method to the class Duck and all sub-types
will inherit it

But, now we need ducks that fly

© Aarthi Natarajan, 2018 5

• A localised update to the code caused a non-local side effect
(flying rubber ducks)

• What normally is thought of as a great use of
inheritance for the purpose of “reuse” actually didn’t
turn out so well, when it comes to maintenance

Design Flaw…

© Aarthi Natarajan, 2018 6

• Solution 1:
– We could simply override fly() method to do nothing, just as the

quack() method was overridden

– But, what happens, when more different types of ducks were
added that didn’t quack or fly

Solution 1…

© Aarthi Natarajan, 2018 7

• Solution 2:

– Need a cleaner way, so that only some ducks fly and some
quack. How about an interface?

Solution 2…

© Aarthi Natarajan, 2018 8

• Using interfaces, all sub-classes that fly implement
flyable interface and that quack implement Quackable
interface

• But, completely destroys code reuse – every class must
implement fly() method (perhaps not an issue in Java 8),
but what if there are more than two kinds of flying
behaviour among ducks that fly.

• Change every class where behaviour has changed? –
maintenance night-mare

• Need a design pattern to come riding on a white horse
and save the day.

Solution 2…

© Aarthi Natarajan, 2018 9

• Is there a way to build software so that when we
need to change it, we could do so with the least
possible impact on the existing code?

© Aarthi Natarajan, 2018 10

• By separating what changes from what stays the same, the
result is fewer unintended consequences from code
changes and more flexibility in your software

• Another way to think about this principle: take the parts
that vary and encapsulate them, so that later you can alter
or extend the parts that vary without affecting those that

don’t.

Solution

Design Principle #3:

Identify aspects of your code that varies and
“encapsulate” and separate it from code that stays the
same, so that it won’t affect your real code.

© Aarthi Natarajan, 2018 11

So, let us pull out the duck behaviour from
the duck class

© Aarthi Natarajan, 2018 12

• How are we going to design the set of classes that
implement the fly and quack behaviour?

Design Principle #4:

Program to a an interface, not to an
implementation

© Aarthi Natarajan, 2018 13

• Program to an interface, really means “program to a
super-type” i.e., the declared type of the variable
should be a super-type (abstract class or interface)

– e.g., Dog d = new Dog(); d.bark(); // programming
to an implementation

– Animal a = new Dog(); a. makeSound(); //
programming to an interface

• What we want is to exploit polymorphism by
programming to a super-type so that actual run-time
object isn’t locked into the code

© Aarthi Natarajan, 2018 14

Previously,

– A behaviour was locked into a concrete implementation in the
Duck class or a specialised implementation in the sub-class

– Either way, we were locked into using a specific
implementation

– There was no room for changing that behaviour

Now,

– Use an interface to represent the behaviour

– Implement a set of separate “behaviour” classes that
implement this interface

– Associate a duck instance with a specific “behaviour”
class

– The Duck classes won’t need to know any of the
implementation details for their own behaviour

Programming to a super-type

© Aarthi Natarajan, 2018 15

Implementing the Behaviours

Here, there are two interfaces, FlyBehavior and QuackBehavior along with set of
classes that implement each concrete behaviour

© Aarthi Natarajan, 2018 16

Integrating Duck behaviour with the Duck instance

1. Define two instance variables in the Duck class

2. Implement performQuack() and performFly() that delegate the quacking and
flying behavior to other objects

3. Assign the instance variables the right behavior

© Aarthi Natarajan, 2018 17

Setting behaviour dynamically

1. Create two setter methods setFlyBehavior() and
setQuackBehavior() inside class Duck

2. To change a duck’s behavior at run-time, call the duck’s setter
method for that behavior

public abstract class Duck {
...

 // Add setter methods to change behavior at run-time
 public void setFlyBehavior(FlyBehavior f) {
 this.flyBehavior =f ;
 }
 public void setQuackBehavior(QuackBehavior q) {
 this.quackBehavior = q;
 }
}

© Aarthi Natarajan, 2018 18

Our complete design

Think about the different relationships - IS-A, HAS-A, IMPLEMENTS

HAS - A

IS - A
IMPLEMENTS

© Aarthi Natarajan, 2018 19

• Each duck has a fly behaviour and has a quack behaviour.
Haven’t we heard of this relationship?

COMPOSITION

• Instead of inheriting their behaviour, the ducks get their
behaviour by being composed with the right behaviour
objects and delegate to the behaviour objects

• This allows you to encapsulate a family of algorithms

• Enables you to “change behaviour” at run-time

HAS-A can be better than IS-A

Design Principle #5:

Favour composition over inheritance

© Aarthi Natarajan, 2018 20

• We have just applied our first design pattern to design our
Duck app

STRATEGY PATTERN

• This allows you to encapsulate a family of algorithms

• Enables you to “change behaviour” at run-time

Our first design pattern

Design Pattern #1: Strategy Pattern

This pattern defines a family of algorithms,
encapsulates each one

© Aarthi Natarajan, 2018 21

• A design pattern is a tried solution to a commonly
recurring problem

• Original use comes from a set of 250 patterns
formulated by Christopher Alexander et al for
architectural (building) design

• Every pattern has

– A short name

– A description of the context

– A description of the problem

– A prescription for a solution

Design pattern

© Aarthi Natarajan, 2018 22

• In software engineering, a design pattern is a general
repeatable solution to a commonly occurring
problem in software design

• A design pattern is

– Represents a template for how to solve a problem

– Captures design expertise and enables this
knowledge to be transferred and reused

– Provide shared vocabularies, improve
communications and eases implementation

– Is not a finished solution, they give you general
solutions to design problems

Design pattern

© Aarthi Natarajan, 2018 23

Using Design Patterns is essentially an “art &
craft”

• Have a good working knowledge of patterns

• Understand the problems they can solve

• Recognise when a problem is solvable by a
pattern

How to use Design Patterns?

© Aarthi Natarajan, 2018 24

• Behavioural Patterns

• Structural Patterns

• Creational Patterns

Design Patterns Categories

© Aarthi Natarajan, 2018 25

• Motivation

– Need a way to adapt the behaviour of an algorithm at
runtime

• Intent

– Define a family of algorithms, encapsulate each one, and
make them interchangeable

– Strategy pattern is a behavioural design pattern that lets the
algorithm vary independently from the context class using it

Pattern #1: Strategy Pattern

© Aarthi Natarajan, 2018 26

27

Image http://www.oodesign.com/

Strategy Pattern: Implementation

© Aarthi Natarajan, 2018

• Applicability

– Many related classes differ in their behaviour

– A context class can benefit from different variants of an
algorithm

– A class defines many behaviours, and these appears as
multiple conditional statements (e.g., if or switch). Instead,
move each conditional branch into their own concrete
strategy class

• Benefits

– Uses composition over inheritance which allows better
decoupling between the behaviour and context class that
uses the behaviour

• Drawbacks

– Increases the number of objects

– Client must be aware of different strategies

Strategy Pattern: Uses, Benefits, Liabilities

© Aarthi Natarajan, 2018 28

• Sorting a list (quicksort, bubble sort, merge-sort)

₋ Encapsulate each sort algorithm into a

concrete strategy class

₋ Context class decides at run-time, which

sorting behaviour is needed

• Search (binary search, DFS, BFS, A*)

29

Strategy Pattern: Examples

© Aarthi Natarajan, 2018

Next,

– State Pattern

– Revisit our video rental example

© Aarthi Natarajan, 2018 30

• A movie can change its classification during its life-time,
hence the price of the movie would vary

• The design above is not right, for the same reason we
cannot have fly() inside the Duck class

Recall our Video Rental Example from Week 03

© Aarthi Natarajan, 2018 31

• Remember our design principles

– encapsulate what varies

– compose and delegate

• Refactoring Techniques that support these principles

– Replace Type Code with Strategy/State Pattern

– Replace conditional logic with polymorphism

• Sadly, it has one flaw...a movie can change its classification
during its life-time

© Aarthi Natarajan, 2018 32

Summary
• Knowing OO basics does not make you a good

OO designer

• Good OO designs are reusable, extensible and
maintainable

OO Basics

• Abstraction

• Encapsulation

• Inheritance

• Polymorphism

OO Principles

• Principle of least
knowledge – talk only to
your friends

• Encapsulate what varies

• Favour composition over
inheritance

• Program to an interface,
not an implementation

OO Patterns

• Strategy

• State

© Aarthi Natarajan, 2018 33

