COMP2511
Exceptions in Java

Dr. Ashesh Mahidadia

Exceptions in Java

/7

** An exception is an event, which occurs during the execution of a program, that disrupts the
normal flow of the program's instructions.

»* When error occurs, an exception object is created and given to the runtime system, this is called
throwing an exception.

** The runtime system searches the call stack for a method that contains a block of code that can
handle the exception.

» The exception handler chosen is said to catch the exception.

Throws exception — Method where error occurred

Method where error occurred < Looking for
Method call appropriate
: : handler
Method without an exception Forwards exception | Method without an exception «
handler - handler Looking for
Method call appropriate
Method with an exception —— Catches some | Method with an exception . andler
handler - other exception handler
Method call
main — main
The call stack. Searching the call stack for

the exception handler.

COMP2511: Exceptions in Java 2

Exceptions in Java

The Three Kinds of Exceptions

/

** Checked exception (IOException, SQLException, etc.)
** Error (VirtualMachineError, OutOfMemoryError, etc.)
*** Runtime exception (ArraylndexOutOfBoundsExceptions, ArithmeticException, etc.)

Checked vs. Unchecked Exceptions
** An exception’s type determines whether it’s checked or unchecked.

s All classes that are subclasses of RuntimeException (typically caused by defects in your
program’s code) or Error (typically ‘system’ issues) are unchecked exceptions.

s All classes that inherit from class Exception but not directly or indirectly from class
RuntimeException are considered to be checked exceptions.

COMP2511: Exceptions in Java 3

Exceptions in Java

** Good introduction on Exceptions at
https://docs.oracle.com/javase/tutorial/essential/exceptions/index.html

** Unchecked Exceptions — The Controversy
https://docs.oracle.com/javase/tutorial/essential/exceptions/runtime.html

COMP2511: Exceptions in Java

https://docs.oracle.com/javase/tutorial/essential/exceptions/index.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/runtime.html

Hierarchy of Java Exceptions

Checked Exceptions Throwable
<7 =
Unchecked Exceptions
Exception Error
X A
RuntimeException \\ IOException AWTErrorI ThreadDeath | VirtualMachineErrorI
> R

ClassCastException I NullPointerException I ArithmeticException I

IndexOutOfBoundsException

ArraylndexOutOfBoundsException I InputMismatchException I

From the book “Java How to Program, Early Objects”, 11th Edition, by Paul J. Deitel; Harvey Deitel

NoSuchElementException

COMP2511: Exceptions in Java 5

Example

public void writeList() {
PrintWriter out = null;

try =S

catch —

finally —=

—try {

System.out.println("Entering" + " try statement");

out

= new PrintWriter(new FileWriter("OutFile.txt"));

for (int i = 0; i < SIZE; i++) {

}

out.println("Value at: " + i + " = " + list.get(i));

——1 catch (IndexOutOfBoundsException e) {
System.err.println("Caught IndexOutOfBoundsException: " + e.getMessage());

3

} catch (IOException e) {

System.err.println("Caught IOException: " + e.getMessage());

—T7 finally {

if (out !'= null) {

System.out.println("Closing PrintWriter");
out.close();

} else {

}

System.out.println("PrintWriter not open");

COMP2511: Exceptions in Java

User Defined Exceptions in Java

** We can also create user defined exceptions.
s All exceptions must be a child of Throwable.

+ A checked exception need to extend the Exception class,

but not directly or indirectly from class Runt imeException.

** An unchecked exception (like a runtime exception) need to extend the

RuntimeException class.

COMP2511: Exceptions in Java

User Defined / Custom Checked Exception

* Normally we define a checked exception, by extending the Exception class.

class MyException extends Exception {

public MyException(String message){

super(message);

COMP2511: Exceptions in Java

User Defined / Custom Exceptions: A Simple Example

try {
out = new PrintWriter(new FileWriter("myData.txt"));
for(int i=0; i<SIZE; i++){
int idx =i + 5;
if(idx >= SIZE){
throw new MyException("idx is out of index range!");
}
out.println(list.get(idx));
}
}
catch(IOException e){
System.out.println(" In writeln");
}
catch(MyException e){
- ~System.out.println(e.getMessage());
}
catch(Exception e){
System.out.println(" In writeln, Exception");
}

COMP2511: Exceptions in Java

Exceptions in Inheritance

*» If a subclass method overrides a superclass method,
a subclass’s throws clause can contain a subset of
a superclass’s throws clause.

It must not throw more exceptions!

¢ Exceptions are part of an APl documentation and contract.

COMP2511: Exceptions in Java

10

Demo: Exceptions in Java

Demo ...

COMP2511: Exceptions in Java

11

Assertions in Java

* An assertion is a statement in the Java that enables you to test your assumptions about your
program. Assertions are useful for checking:

* Preconditions, Post-conditions, and Class Invariants (DbC!)
* |Internal Invariants and Control-Flow Invariants

* You should not use assertions:
e for argument checking in public methods.

* to do any work that your application requires for correct operation.
e Evaluating assertions should not result in side effects.

* The following document shows how to use assertions in Java :

https://docs.oracle.com/javase/8/docs/technotes/guides/language/assert.html

Important: for backward compatibility, by default, Java disables assertion validation feature.
It needs to be explicitly enabled using the following command line argument:
e -—enableassertions command line argument, or

e —ea command line argument

COMP2511: Exceptions in Java

12

https://docs.oracle.com/javase/8/docs/technotes/guides/language/assert.html

Assert : Example

/**
* Sets the refresh interval (which must correspond to a legal frame rate).
*
* @param 1interval refresh interval in milliseconds.
¥
private void setRefreshInterval(int interval) {
// Confirm adherence to precondition in nonpublic method
assert interval > 0 && interval <= 1000/MAX_REFRESH RATE : interval;

)

... // Set the refresh interval

}

/

COMP2511: Exceptions in Java

13

Exceptions: Summary Points

% Consider your exception-handling and error-recovery strategy in the design process.
% Sometimes you can prevent an exception by validating data first.

%+ If an exception can be handled meaningfully in a method, the method should catch the
exception rather than declare it.

% If a subclass method overrides a superclass method, a subclass’s throws clause can contain a
subset of a superclass’s throws clause. It must not throw more exceptions!

» Programmers should handle checked exceptions.

** If unchecked exceptions are expected, you must handle them gracefully.

% Only the first matching catch is executed, so select your catching class(es) carefully.
» Exceptions are part of an APl documentation and contract.

% Assertions can be used to check preconditions, post-conditions and invariants.

COMP2511: Exceptions in Java 14

