
COMP2511
Exceptions in Java

Prepared by

Dr. Ashesh Mahidadia

Exceptions in Java
v An exception is an event, which occurs during the execution of a program, that disrupts the

normal flow of the program's instructions.

v When error occurs, an exception object is created and given to the runtime system, this is called
throwing an exception.

v The runtime system searches the call stack for a method that contains a block of code that can
handle the exception.

v The exception handler chosen is said to catch the exception.

COMP2511: Exceptions in Java 2

The call stack. Searching the call stack for
the exception handler.

Exceptions in Java
The Three Kinds of Exceptions

v Checked exception (IOException, SQLException, etc.)
v Error (VirtualMachineError, OutOfMemoryError, etc.)
v Runtime exception (ArrayIndexOutOfBoundsExceptions, ArithmeticException, etc.)

Checked vs. Unchecked Exceptions
v An exception’s type determines whether it’s checked or unchecked.

v All classes that are subclasses of RuntimeException (typically caused by defects in your
program’s code) or Error (typically ‘system’ issues) are unchecked exceptions.

v All classes that inherit from class Exception but not directly or indirectly from class
RuntimeException are considered to be checked exceptions.

COMP2511: Exceptions in Java 3

Exceptions in Java

v Good introduction on Exceptions at
https://docs.oracle.com/javase/tutorial/essential/exceptions/index.html

v Unchecked Exceptions — The Controversy
https://docs.oracle.com/javase/tutorial/essential/exceptions/runtime.html

COMP2511: Exceptions in Java 4

https://docs.oracle.com/javase/tutorial/essential/exceptions/index.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/runtime.html

Hierarchy of Java Exceptions

COMP2511: Exceptions in Java 5

From the book “Java How to Program, Early Objects”, 11th Edition, by Paul J. Deitel; Harvey Deitel

Unchecked Exceptions

Checked Exceptions

Example

COMP2511: Exceptions in Java 6

try

catch

finally

User Defined Exceptions in Java

v We can also create user defined exceptions.

v All exceptions must be a child of Throwable.

v A checked exception need to extend the Exception class,

but not directly or indirectly from class RuntimeException.

v An unchecked exception (like a runtime exception) need to extend the

RuntimeException class.

COMP2511: Exceptions in Java 7

User Defined / Custom Checked Exception

• Normally we define a checked exception, by extending the Exception class.

COMP2511: Exceptions in Java 8

User Defined / Custom Exceptions: A Simple Example

COMP2511: Exceptions in Java 9

Exceptions in Inheritance

v If a subclass method overrides a superclass method,

a subclass’s throws clause can contain a subset of

a superclass’s throws clause.

It must not throw more exceptions!

v Exceptions are part of an API documentation and contract.

COMP2511: Exceptions in Java 10

Demo: Exceptions in Java

Demo …

COMP2511: Exceptions in Java 11

Assertions in Java
• An assertion is a statement in the Java that enables you to test your assumptions about your

program. Assertions are useful for checking:
• Preconditions, Post-conditions, and Class Invariants (DbC!)
• Internal Invariants and Control-Flow Invariants

• You should not use assertions:
• for argument checking in public methods.
• to do any work that your application requires for correct operation.

• Evaluating assertions should not result in side effects.

• The following document shows how to use assertions in Java :
https://docs.oracle.com/javase/8/docs/technotes/guides/language/assert.html

Important: for backward compatibility, by default, Java disables assertion validation feature.
It needs to be explicitly enabled using the following command line argument:

• -enableassertions command line argument, or
• -ea command line argument

COMP2511: Exceptions in Java 12

https://docs.oracle.com/javase/8/docs/technotes/guides/language/assert.html

Assert : Example

COMP2511: Exceptions in Java 13

Exceptions: Summary Points

v Consider your exception-handling and error-recovery strategy in the design process.

v Sometimes you can prevent an exception by validating data first.

v If an exception can be handled meaningfully in a method, the method should catch the
exception rather than declare it.

v If a subclass method overrides a superclass method, a subclass’s throws clause can contain a
subset of a superclass’s throws clause. It must not throw more exceptions!

v Programmers should handle checked exceptions.

v If unchecked exceptions are expected, you must handle them gracefully.

v Only the first matching catch is executed, so select your catching class(es) carefully.

v Exceptions are part of an API documentation and contract.

v Assertions can be used to check preconditions, post-conditions and invariants.

COMP2511: Exceptions in Java 14

