
&203�����
�'HVLJQ�3ULQFLSOHV

©	Aarthi	Natarajan,	2018 1

The	One	Constant	in	software	

analysis	and	design

• What is the one thing you can always count on in

writing software? - Change

©	Aarthi	Natarajan,	2018 2

Is	all	about:

• Making	sure	your	software	does	what	the	customer	wants	it	to	do	–

use-case	diagram,	feature	list,	prioritise	them

• Applying	OO		design	principles	to:

– To	ensure	the	system	is	flexible	and	extensible	to	accommodate

changes	in	requirements

– To	strive	for	a	maintainable,	reusable,	extensible	design

Building	Good	Software

©	Aarthi	Natarajan,	2018 3

• A change in requirements some-times reveals

problems with your system that you did not even know

that they existed

• Remember, change is constant and your system should
continually improve when you add these

changes…..else software rots

©	Aarthi	Natarajan,	2018 4

We write bad code

Why do write bad code ?

• Is it because do not know how to write better code?

• Requirements change in ways that original design did not

anticipate

• But changes are not the issue –

• changes requires refactoring and refactoring requires time
and we say we do not have the time

• Business pressure - changes need to be made quickly –

“quick and dirty solutions”

• changes may be made by developers not familiar with the

original design philosophy

Bad code, in fact slows us down

Why	does	Software	Rot?

©	Aarthi	Natarajan,	2018 5

Design	Smells

When	software	rots

it	smells…

A	design	smell	

• is	a	symptom	of	poor	design
• often	caused	by	violation of	key	design

principles

• has	structures	in	software	that	suggest

refactoring

©	Aarthi	Natarajan,	2018 6

Design	Smells	(1)

Rigidity

• Tendency	of	the	software	being	too	difficult	to	change	even	in

simple	ways

• A	single	change	causes	a	cascade	of	changes	to	other	dependent

modules

Fragility

• Tendency	of	the	software	to	break	in	many	places	when	a	single

change	is	made

Rigidity	and	fragility	complement	each	other	– aim	towards	

minimal	impact,	when	a	new	feature	or	change	is	needed

©	Aarthi	Natarajan,	2018 7

Design	Smells	(2)

Immobility

• Design	is	hard	to	reuse

• Design	has	parts	that	could	be	useful	to	other	systems,	but
the	effort	needed	and	risk	in	disentangling	the	system	is	too

high

Viscosity

• Software	viscosity	– changes	are	easier	to	implement

through	‘hacks’	over	‘design	preserving	methods’

• Environment	viscosity	– development	environment	is	slow
and	in-efficient

Opacity

• Tendency	of	a	module	to	be	difficult	to	understand

• Code	must	be	written	in	a	clear	and	expressive	manner
©	Aarthi	Natarajan,	2018 8

Design	Smells	(3)
Needless	complexity

• Contains	constructs	that	are

not	currently	useful

• Developers	ahead	of

requirements

Needless	repetition

• Design	contains	repeated

structures	that	could

potentially	be	unified	under	a

single	abstraction

• Bugs	found	in	repeated	units

have	to	be	fixed	in	every

repetition

©	Solid	Principles	and	Design	Patterns	– Ganesh	Samarthyam©	Aarthi	Natarajan,	2018 9

Characteristics	of	Good	Design

So,	we	know	when	our	design	smells…

But	how	do	we	measure	if	a	software	is	well-designed?

The	design	quality	of	software	is	characterised	by

• Coupling
• Cohesion

Good software aims for building a system with loose coupling

and high cohesion among its components so that software

entities are:
• Extensible

• Reusable

• Maintainable

• Understandable

• Testable
©	Aarthi	Natarajan,	2018 10

Coupling

- Is defined as the degree of interdependence between

components or classes

- High coupling occurs when one component A depends on the

internal workings of another component B and is affected by
internal changes to component B

- High coupling leads to a complex system, with difficulties in

maintenance and extension…eventual software rot

- Aim for loosely coupled classes - allows components to be used

and modified independently of each other

- But “zero-coupled” classes are not usable – striking a balance is

an art!
©	Aarthi	Natarajan,	2018 11

Cohesion
- The degree to which all elements of a component or class or module

work together as a functional unit

- Highly cohesive modules are:

- much easier to maintain and less frequently changed and have
higher probability of reusability

- Think about

- How well the lines of code in a method or function work together
to create a sense of purpose?

- How well do the methods and properties of a class work together
to define a class and its purpose?

- How well do the classes fit together to create modules?

• Again, just like zero-coupling, do not put all the responsibility into a
single class to avoid low cohesion!

©	Aarthi	Natarajan,	2018 12

And,	applying	design	principles is	the	key	to	creating	high-quality	

software	

“Design	principles	are	key	notions	considered

fundamental	to	many	different	software	design

approaches	and	concepts.”

- SWEBOK	v3	(2014)

"The	critical	design	tool	for	software	development

is	a	mind	well	educated	in	design	principles"

- Craig	Larman

©	Aarthi	Natarajan,	2018 13

What	is	a	“design	principle”?

A basic tool or technique that can be applied to designing

or writing code to make software more maintainable,

flexible and extensible

©	Aarthi	Natarajan,	2018 14

Several	Design	Principles…One	Goal

Good	Software	
Design

Highly	cohesive,

Loosely	coupled	

systems

Separation	of	Concerns	(SOC)	
(Djikstra,	1974)

SOLID	
Principles
(next	slide)

Design	Patterns	(GOF)	
₋ Program	to	an	interface,	not	to	an	

implementation

₋ Object	composition	over	class	inheritance

Pragmatic	Programming
• DRY

(Don’t	Repeat	Yourself)

• KISS
(keep	it	simple,	stupid!)

Less	Fragile	Systems	-
(Maintainable,	

Reusable	

Extensible	Code)
©	Aarthi	Natarajan,	2018 15

SOLID

• Single	responsibility	principle:	A class should	only	have	a

single	responsibility.

• Open–closed	principle:	Software	entities	should	be	open	for

extension,	but	closed	for	modification.

• Liskov substitution	principle:	Objects	in	a	program	should	be
replaceable	with	instances	of	their	subtypes	without	altering

the	correctness	of	that	program.

• Interface	segregation	principle:	Many	client-specific

interfaces	are	better	than	one	general-purpose	interface.

• Dependency	inversion	principle:	One	should	"depend	upon
abstractions,	[not]	concretions.”

©	Aarthi	Natarajan,	2018 16

When	to	use	design	principles

• Design	principles	help	eliminate	design	smells

• But,	don’t	apply principles	when	there	no	design	smells

• Unconditionally	conforming	to	a	principle (just	because

it	is	a	principle	is	a	mistake)

• Over-conformance	leads	to	the	design	smell	– needless

complexity

©	Aarthi	Natarajan,	2018 17

Design	Principle	#1

The	Principle	of	Least	Knowledge	or	Law	of	Demeter

©	Aarthi	Natarajan,	2018 18

• Classes should know about and interact with as few classes as
possible

• Reduce the interaction between objects to just a few close
“friends”

• These friends are “immediate friends” or “local objects”

• Helps us to design “loosely coupled” systems so that changes
to one part of the system does not cascade to other parts of
the system

• The principle limits interaction through a set of rules

Design	Principle	#1

The	Principle	of	Least	Knowledge	(Law	of	Demeter)	– Talk	

only	to	your	friends

©	Aarthi	Natarajan,	2018 19

A method in an object should only invoke methods of:
• The	object	itself

• The	object	passed	in	as	a	parameter	to	the	method

• Objects	instantiated	within	the	method

• Any	component	objects

• And	not	those	of	objects	returned	by	a	method

Don't	dig	deep	inside	your	friends	for	friends	of	friends	of	friends	

and	get	in	deep	conversations	with	them	-- don't	do

– e.g.	o.get(name).get(thing).remove(node)

The	Principle	of	Least	Knowledge

(Law	of	Demeter)

©	Aarthi	Natarajan,	2018 20

A	method	M	in	an	object	O can	call	on	any	other	method	

within	O itself	

• This	rule	makes	logical	sense,	a	method	encapsulated	within	a

class	can	call	any	other	method	that	is	also	encapsulated	within
the	same	class

public class M {
public void methodM() {

this.methodN();
}
public void methodN() {

// do something
}
}

• Here methodM() calls methodN() as both are methods of
the same class

Principle	of	Least	Knowledge,	Rule	1:

©	Aarthi	Natarajan,	2018 21

A	method	M	in	an	object	O can	call	on	any	methods	of	

parameters	passed	to	the	method	M
• The	parameter	is	local	to	the	method,	hence	it	can	be	called	as	a

friend
public class O {

public void M(Friend f) {
// Invoking a method on a parameter passed to the method is
// legal
f.N();
}

public class Friend {

public void N() {
// do something
}
}

Principle	of	Least	Knowledge,	Rule	2:

22

A	method	M	can	call	a	method	N of	another	object,	if	that	

object	is	instantiated	within	the	method	M
• The	object	instantiated	is	considered	“local”	just	as	the	object

passed	in	as		a	parameter

public class O {

public void M() {
Friend f = new Friend();
// Invoking a method on an object created within the
// method is legal
f.N();

}

public class Friend {
public void N() {
// do something
}

}

Principle	of	Least	Knowledge,	Rule	3:

23

Any	method	M	in	an	object	O can	call	on	any	methods	of	any	

type	of	object	that	is	a	direct	component	of	O
• This	means	a	method	of	a	class	can	call	methods	of	classes	of	its

instance	variables

public class O {

public Friend instanceVar = new Friend();

public void M4() {
// Any method can access the methods of the friend class
F through the instance variable "instanceVar"
instanceVar.N();
}

public class Friend {
public void N() {
// do something
}

}

Principle	of	Least	Knowledge,	Rule	4:

©	Aarthi	Natarajan,	2018 24

Well-designed	Inheritance

25

Design	Principle	#2
LSP	(Liskov Substitution	Principle)

LSP	is	about	well-designed	inheritance

Barbara	Liskov (1988)	wrote:

If	for	each	object	o1	of	type	S	there	is	an	object	o2	of	type	T	such	
that	for	all	programs	P	defined	in	terms	of	T,	the	behavior of	P	is	
unchanged	when	o1	is	substituted	for	o2	then	S	is	a	subtype	of	T.

Bob	wrote:

subtypes	must	be	substitutable	for	their	base	types

Lecture	demo:	Square	vs	Rectangle

What	is	the	problem	with	Square-Rectangle	IS	A	relationship?

©	Aarthi	Natarajan,	2018 26

Another	LSP	Example:	A	board	game

LSP reveals hidden problems with the above inheritance structure

Board3D

©	Aarthi	Natarajan,	2018 27

What	are	the	issues?

LSP reveals hidden problems with the above inheritance structure

Board3D

Board3D

©	Aarthi	Natarajan,	2018 28

What	are	the	issues?

LSP states that subtypes must be substitutable for their base
types

Board board = new Board3D()

But, when you start to use the instance of Board3D like a Board,
things go wrong

Artillery unit = board.getUnits(8,4)

Inheritance and LSP indicate that any method on Board should be
able to use on a Board3D, and that Board3D can stand in for
Board without any problems, so the above example clearly
violates LSP

Board here is actually
an instance of the sub-
type Board3D

But, what does this
method for a 3D board?

©	Aarthi	Natarajan,	2018 29

Solve	the	problem	without	inheritance

So	what	options	are	there	besides	inheritance?

• Delegation	– delegate	the	functionality	to	another	class

• Composition	– reuse	behaviour	using	one	or	more	classes	with

composition

Design	Principle: Favour	composition	over	inheritance

If	you	favour	delegation,	composition	over	inheritance,	your	
software	will	be	more	flexible,	easier	to	maintain,	extend

©	Aarthi	Natarajan,	2018 30

• The	argument	list	should	be	exactly	the	same	as	that	of	the

overridden	method

• The	access	level	cannot	be	more	restrictive	than	the	overridden

method’s	access	level.

E.g.,	if	the	super	class	method	is	declared	public then	the

overriding	method	in	the	sub	class	cannot	be	either	private or
protected.

• A	method	declared	final cannot	be	overridden.

• Constructors	cannot	be	overridden.

Rules	for	Method	Overriding

©	Aarthi	Natarajan,	2018 31

Can	static	methods	be	over-ridden?

Static	methods	can	be	defined	in	the	sub-class	with	the	same	

signature

– This	is	not	overriding,	as	there	is	no	run-time	polymorphism

– The	method	in	the	derived	class	hides	the	method	in	the	base

class

Lecture demo...

©	Aarthi	Natarajan,	2018 32

Covariance	of	return	types	in	the	overridden	method	

• The	return	type	in	the	overridden	method	should	be	the	same	or

a	sub-type	of	the	return	type	defined	in	the	super-class

• This	means	that	return	types	in	the	overridden	method	may	be

narrower	than	the	parent	return	types

e.g.,	Assume	Cat	is	a	sub	class	of	Animal

Rules	for	Method	Overriding

©	Aarthi	Natarajan,	2018 33

What	about	Contra-variance	of	method	arguments	in	the	

overridden	method

Can	arguments	to	methods	in	sub-class	be	wider	than	the	
arguments	passed	in	the	parent’s	method	?

Rules	for	Method	Overriding

©	Aarthi	Natarajan,	2018 34

