
COMP2511

Object	Oriented	Programming	(OOP)
in	Java

Prepared	by

Dr.	Ashesh Mahidadia

OOP	in	Java

v Object	Oriented	Programming	(OOP)	

v Inheritance	in	OOP	

v Introduction	to	Classes	and	Objects	

v Subclasses	and	Inheritance	

v Abstract	Classes	

v Single	Inheritance	versus	Multiple	Inheritance	

v Interfaces	

v Method	Forwarding	(Has-a	relationship)

v Method	Overriding	(Polymorphism)

v Method	Overloading

v Constructors

COMP2511:	OOP	in	Java 2

Ashesh Mahidadia

Subclasses	and	Inheritance:	
First	Approach
We	want	to	implement		GraphicalCircle.	
This	can	be	achieved	in	at	least	3	different	ways.

First	Approach:

v In	this	approach	we	are	creating	the	

new	separate	class	for	GraphicalCircle and	
re-writing the	code	already	available	in	the	class	
Circle.	

v For	example,	we	re-write	the	methods	area and	
circumference.	

v Hence,	this	approach	is	NOT	elegant,	in	fact	its	

the	worst	possible	solution.

Note	again, its	the	worst	possible	solution!

COMP2511:	OOP	in	Java 14

Subclasses	and	Inheritance:	
Second	Approach

v We	want	to	implement		GraphicalCircle so	

that	it	can	make	use	of	the	code	in	the	class	

Circle.

v This	approach	uses	“has-a”	relationship.

v That	means,	a	GraphicalCircle has	a	
(mathematical)	Circle.

v It	uses	methods	from	the	class	Circle	(area
and	circumference)	to	define	some	of	the	

new	methods.		

v This	technique	is	also	known	as	method	
forwarding.

COMP2511:	OOP	in	Java
15

Subclasses	and	Inheritance:	
Third	Approach	- Extending	a	Class

v We	can	say	that	GraphicalCircle is-a Circle.		

v Hence,	we	can	define	GraphicalCircle as	an	
extension,	or	subclass of	Circle.

v The	subclass	GraphicalCircle inherits all	the	

variables	and	methods	of	its	superclass	Circle.

COMP2511:	OOP	in	Java
16

Subclasses	and	Inheritance:		Example	
We	can	assign	an	instance	of	GraphicCircle to	a	Circle variable.		For	example,

GraphicCircle gc = new GraphicCircle();
...

double area = gc.area();
...

Circle c = gc;
// we cannot call draw method for “c”.

Important:

v Considering	the	variable	“c”	is	of	type	Circle,	

v we	can	only	access	attributes	and	methods	available	in	the	class Circle.	

v we	cannot call	drawmethod	for		“c”.	

COMP2511:	OOP	in	Java
17

Super	classes,	Objects,	and	the	Class	Hierarchy
v Every	class	has		a	superclass.

v If	we	don’t	define	the	superclass,	by	default,	the	superclass	is	the	class	Object.

Object Class	:
v Its	the	only	class	that	does	not	have	a	superclass.

v The	methods	defined	by	Object	can	be	called	by	any	Java	object	(instance).

v Often	we	need	to	override the	following	methods:

• toString()
o read	the	API	at	https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Object.html#toString()

• equals()
o read	the	API	at	

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Object.html#equals(java.lang.Object)

• hasCode()

COMP2511:	OOP	in	Java 18

Abstract	Classes
Using	abstract classes,	

v we	can	declare	classes	that	define	only part	of	an	implementation,			

v leaving	extended	classes	to	provide	specific	implementation	of	some	or	all	the	

methods.

The	benefit	of	an	abstract	class	

v is	that	methods	may	be	declared	such	that	the	programmer	knows	the	interface	

definition	of	an	object,

v however,	methods	can	be	implemented	differently in	different	subclasses	of	the	

abstract	class.

COMP2511:	OOP	in	Java 19

Abstract	Classes
Some	rules	about	abstract	classes:

v An	abstract	class	is	a	class	that	is	declared	abstract.

v If	a	class	includes abstract	methods,	then	the	class	itself	must	be	declared	abstract.

v An	abstract	class	cannot	be	instantiated.

v A	subclass	of	an	abstract	class	can	be	instantiated	if	it	overrides	each	of	the	abstract	

methods	of	its	superclass	and	provides	an	implementation for	all of	them.

v If	a	subclass	of	an	abstract	class	does	not	implement	all	the	abstract	methods	it	

inherits,	that	subclass	is	itself	abstract.	

COMP2511:	OOP	in	Java 20

Abstract	Class:	Example

COMP2511:	OOP	in	Java 21

Abstract	Class:	Example

COMP2511:	OOP	in	Java 22

Abstract	Class:	Example

COMP2511:	OOP	in	Java 23

We	can	now	write	code	like	this:

Some	points	to	note:

v As	Shape is	an	abstract	class,	we	cannot	

instantiate	it.

v Instantiations	of	Circle and	Rectangle can	be	

assigned	to	variables	of	Shape.				

No	cast	is	necessary

v In	other	words,	subclasses	of	Shape can	be	

assigned	to	elements	of	an	array	of	Shape.			

No	cast	is	necessary.

v We	can	invoke	area()	and	circumference()	

methods	for	Shape objects.

Single	Inheritance	versus	Multiple	Inheritance	

• In	Java,	a	new	class	can	extend	exactly	one	superclass	- a	
model	known	as	single	inheritance.

• Some	object-oriented	languages	employ	multiple
inheritance,	where	a	new	class	can	have	two	or	more	super	
classes.

• In	multiple	inheritance,	problems arise	when	a	superclass’s	

behaviour	is	inherited	in	two/multiple	ways.

• Single	inheritance	precludes	some	useful	and	correct	

designs.

• In	Java,	interface	in	the	class	hierarchy	can	be	used	to	add	
multiple	inheritance,	more	discussions	on	this	later.	

COMP2511:	OOP	in	Java 24

Diamond	inheritance	
problem	

