COMP2511

Object Oriented Programming (OOP)
In Java

Prepared by
Dr. Ashesh Mahidadia

OOP in Java

** Object Oriented Programming (OOP)
** Inheritance in OOP

** Introduction to Classes and Objects

*¢ Subclasses and Inheritance

s Abstract Classes

** Single Inheritance versus Multiple Inheritance

*¢ Interfaces

** Method Forwarding (Has-a relationship)
s* Method Overriding (Polymorphism)

** Method Overloading

%* Constructors

COMP2511: OOP in Java

Ashesh Mahidadia

Subclasses and Inheritance:
First Approach

We want to implement GraphicalCircle.

This can be achieved in at least 3 different ways.

First Approach:

\/

** In this approach we are creating the

new separate class for GraphicalCircle and
re-writing the code already available in the class
Circle.

» For example, we re-write the methods area and
circumference.

% Hence, this approach is NOT elegant, in fact its
the worst possible solution.
Note again, its the worst possible solution!

// The class of graphical circles

public class GraphicalCircle {

int x, vy;
int «r;
Color outline, fill;

public double circumference() {
return 2 * 3.14159 * r ;

}

public double area () {
return 3.14159 * r * r ;

}

public void draw(Graphics g) {
g.setColor (outline) ;
g.drawOval (x-r, y-r, 2*r, 2*r);
g.setColor (£fill) ;
g.filloval (x-r, y-r, 2*r, 2*r);

COMP2511: OOP in Java 14

Subclasses and Inheritance:
Second Approach

L)

* We want to implement GraphicalCircle so
that it can make use of the code in the class
Circle.

L)

% This approach uses “has-a” relationship.

» That means, a GraphicalCircle has a
(mathematical) Circle.

%* |t uses methods from the class Circle (area
and circumference) to define some of the
new methods.

L)

L)

* This technique is also known as method
forwarding.

COMP2511: OOP in Java

public class GraphicalCircle2 {

// here's the math circle

Circle c;

// The new graphics variables go here
Color outline, fill;

// Very simple constructor
public GraphicalCircle2() {
¢ = new Circle();
this.outline = Color.black;
this.fill = Color.white;

}

// Another simple constructor
public GraphicalCircle2(int x, int y, int r,
Color o, Color f) {
¢ = new Circle(x, y, r);
this.outline = o;
this.fill = f;
}

// draw method , using object ‘c'’
public void draw(Graphics g) {
g.setColor(outline);
g.drawOval(c.x - ¢c.r, c.y - c.r, 2 * ¢c.r, 2 * c.r);
g.setColor(fill);
g.fillOval(c.x - ¢.r, c.y - c.r, 2 * ¢c.r, 2 * c.r);

15

Subclasses and Inheritance:
Third Approach - Extending a Class

** We can say that GraphicalCircle is-a Circle.

% Hence, we can define GraphicalCircle as an
extension, or subclass of Circle.

% The subclass GraphicalCircle inherits all the
variables and methods of its superclass Circle.

import java.awt.Color;
import java.awt.Graphics;

public class GraphicalCircle extends Circle {

Color outline, fill;
public GraphicalCircle(){
super();
this.outline = Color.black;
this.fill = Color.white;
}
// Another simple constructor
public GraphicalCircle(int x, int vy,
int r, Color o, Color f){
super(x, y, r);
this.outline = o; this.fill = f;

}

public void draw(Graphics g) {
g.setColor(outline);
g.drawOval(x-r, y-r, 2*r, 2*%r);
g.setColor(fill);
g.fillOval(x-r, y-r, 2*r, 2*r);

COMP2511: OOP in Java

16

Subclasses and Inheritance: Example

We can assign an instance of GraphicCircle to a Circle variable. For example,

GraphicCircle gc = new GraphicCircle();
double area = gc.area();

Circle c¢ = gc;

\ 144

// we cannot call draw method for C

Important:

+» Considering the variable “c” is of type Circle,

** we can only access attributes and methods available in the class Circle.

R/

%* we cannot call draw method for “c”.

COMP2511: OOP in Java

17

Super classes, Objects, and the Class Hierarchy

/

** Every class has a superclass.

s If we don’t define the superclass, by default, the superclass is the class Object.

Object Class :

R/

s Its the only class that does not have a superclass.

s The methods defined by Object can be called by any Java object (instance).

s Often we need to override the following methods:
* toString()

o read the API at https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Object.html#toString()

* equals()
o read the API at
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Object.html#equals(java.lang.Object)

* hasCode ()

COMP2511: OOP in Java 18

Abstract Classes

Using abstract classes,

* we can declare classes that define only part of an implementation,

** leaving extended classes to provide specific implementation of some or all the
methods.

The benefit of an abstract class
% is that methods may be declared such that the programmer knows the interface
definition of an object,
** however, methods can be implemented differently in different subclasses of the
abstract class.

COMP2511: OOP in Java 19

Abstract Classes

Some rules about abstract classes:

s An abstract class is a class that is declared abstract.
s If a class includes abstract methods, then the class itself must be declared abstract.
* An abstract class cannot be instantiated.

% A subclass of an abstract class can be instantiated if it overrides each of the abstract
methods of its superclass and provides an implementation for all of them.

s If a subclass of an abstract class does not implement all the abstract methods it
inherits, that subclass is itself abstract.

COMP2511: OOP in Java 20

Abstract Class: Example

Shape
Circle Réctangle
public abstract class Shape {

public abstract double area();
public abstract double circumference();

COMP2511:

public class Circle extends Shape {

protected static final double pi = 3.14159;
protected int x, y;
protected int r;

// Very simple constructor
public Circle()

this.x = 1;
this.y = 1;
this.r = 1;
}
// Another simple constructor
public Circle(int x, int y, int r){
this.x = x;
this.y = y;
this.r = r;
}
/ -

* Below, methods that return the circumference
* area of the circle
*/
public double circumference() {
return 2 * pi * r ;
}
public double area () {
return pi *r *r ;

}
}

OOP inJava 21

Abstract Class: Example

Shape

e

Circle Réctangle

public abstract class Shape {

public abstract double area();
public abstract double circumference();

}

COMP2511: OOP in Java

public class Rectangle extends Shape {

protected double width, height;

public Rectangle() {

}

width = 1.0;
height = 1.0;

public Rectangle(double w, double h) {

}

this.width = w;
this.height = h;

public double area()({

}

return width*height;

public double circumference() {

}

return 2*(width + height);

22

Abstract Class: Example

Some points to note:

** As Shape is an abstract class, we cannot
instantiate it.

» Instantiations of Circle and Rectangle can be
assigned to variables of Shape.
No cast is necessary

» In other words, subclasses of Shape can be
assigned to elements of an array of Shape.
No cast is necessary.

** We can invoke area() and circumference()

Shape

AN

Circle Réctangle

We can now write code like this:

// create an array to hold shapes
Shape[] shapes = new Shape[4];

shapes[0] = new Circle(4, 6, 2);
shapes[1l] = new Rectangle(1.0, 3.0);
shapes[2] = new Rectangle(4.0, 2.0);
shapes[3] = new GraphicalCircle(1l, 1, 6,

Color.green, Color.yellow);

double total area = 0;

for(int i = 0; i < shapes.length; i++) {
// compute the area of the shapes

—> total area += shapes[i].area(); |

methods for Shape objects.

y -

COMP2511: OOP in Java 23

Single Inheritance versus Multiple Inheritance

* In Java, a new class can extend exactly one superclass - a
model known as single inheritance.

* Some object-oriented languages employ multiple
inheritance, where a new class can have two or more super
classes.

* In multiple inheritance, problems arise when a superclass’s
behaviour is inherited in two/multiple ways.

* Single inheritance precludes some useful and correct
designs.

* In Java, interface in the class hierarchy can be used to add
multiple inheritance, more discussions on this later.

COMP2511: OOP in Java

2N
X Y
N,

Diamond inheritance
problem

24

