COMP2511

Object Oriented Programming (OOP)
In Java

Prepared by
Dr. Ashesh Mahidadia

OOP in Java

Object Oriented Programming (OOP)
Inheritance in OOP
Introduction to Classes and Objects

Subclasses and Inheritance

Abstract Classes

Single Inheritance versus Multiple Inheritance

Interfaces

Method Forwarding (Has-a relationship)
Method Overriding (Polymorphism)
Method Overloading

Constructors

COMP2511: OOP in Java

Ashesh Mahidadia

Interfaces in Java

Interfaces are like abstract classes, but with few important differences.

All the methods defined within an interface are implicitly abstract. (We don’t need to
use abstract keyword, however, to improve clarity one can use abstract keyword).

Variables declared in an interface must be static and final, that means,
they must be constants.

Just like a class extends its superclass, it also can optionally implements an interface.

In order to implement an interface, a class must first declare the interface in an
implements clause, and then it must provide an implementation for all of the abstract

methods of the interface.
A class can “implements” more than one interfaces.

More discussions on “interfaces” later in the course.

COMP2511: OOP in Java

25

Interfaces in Java: Example

public interface Drawable {
public void setColor (Color c);
public void setPosition(double x, double y);
public void draw(Graphics g);

}

public class DrawableRectangle

Shapes Drawable extends Rectangle
" implements Drawable ({

Cir€le Rectangle -- private Color c;
) / private double x, y;

// Here are implementations of the

// mehtods in Drawable

// we also inherit all public methods
// of Rectangle

public void setColor(Color c) { this.c = c;}
public void setPosition(double x, double y) {
this.x = x; this.y = y;}
public void draw(Graphics g) {
g.drawRect (x,y,w,h,c); }

COMP2511: OOP in Java

Shape[] shapes = new Shape[3];
Drawable[] drawables = new Drawable[3];

Using Interfaces: Example

DrawableCircle dc = new DrawableCircle(1l.1);
DrawableSquare ds = new DrawableSquare(2.5);
DrawableRectangle dr = new DrawableRectangle (2.3,

4.5);
.] // The shapes can be assigned to both arrays
** When a class implements an shapes[0] = dc; drawables[0] = dc;
interface, instance of that class can | shapes[l] = ds; drawables[l] = ds;
also be assigned to variables of the shapes[2] = ooy drawables(2] = dr/
interface type. // We can invoke abstract method

// in Drawable and Shapes

double total area = 0;
for(int i=0; i< shapes.length; i++) {

total area += shapes[i].area();

N

drawables[i] .setPosition(i*10.0, i*10.0);

// assume that graphic area ‘g’ is
\ // defined somewhere
drawables[i] .draw(qg) ;

}

COMP2511: OOP in Java 27

Implementing Multiple Interfaces

A class can implements more than one interfaces. For example,

Shapes Drawable Scalable Movable

Circle Rectangle

DrawableCircle DrawableRectangle

DrawabIeSCaIabIeRectangIe

public class DrawableScalableRectangle
extends DrawableRectangle
implements Movable, Scalable {
// methods go here

}

COMP2511: OOP in Java

28

Extending Interfaces

** Interfaces can have sub-interfaces, just like classes can have subclasses.

s A sub-interface inherits all the abstract methods and constants of its super-interface,
and may define new abstract methods and constants.

¢ Interfaces can extend more than one interface at a time. For example,

public interface Transformable
extends Scalable,Rotable,Reflectable {}

public interface DrawingObject
extends Drawable, Transformable({}

public class Shape implements DrawingObject {
}

COMP2511: OOP in Java

