
COMP2511

Object	Oriented	Programming	(OOP)
in	Java

Prepared	by
Dr.	Ashesh Mahidadia

OOP	in	Java

v Object	Oriented	Programming	(OOP)	

v Inheritance	in	OOP	

v Introduction	to	Classes	and	Objects	

v Subclasses	and	Inheritance	

v Abstract	Classes	

v Single	Inheritance	versus	Multiple	Inheritance	

v Interfaces	

v Method	Forwarding	(Has-a	relationship)

v Method	Overriding	(Polymorphism)

v Method	Overloading

v Constructors

COMP2511:	OOP	in	Java 2

Ashesh Mahidadia

Object	Oriented	Programming	(OOP)
In	procedural	programming	languages	(like	‘C’),	programming	tends	to	be	action-oriented,	

whereas	in	Java	- programming	is	object-oriented.

In	procedural programming,

• groups	of	actions	that	perform	some	task	are	formed	into	functions	and	functions	are	grouped	to	
form	programs.

In	OOP,	

• programmers	concentrate	on	creating	their	own	user-defined	types	called	classes.	

• each	class	contains	data	as	well	as	the	set	of	methods	(procedures)	that	manipulate	the	data.		

• an	instance	of	a	user-defined	type	(i.e.	a	class)	is	called	an	object.
• OOP	encapsulates data	(attributes)	and	methods	(behaviours)	into	objects,		the	data	and	methods	
of	an	object	are	intimately	tied	together.

• Objects	have	the	property	of	information hiding.
COMP2511:	OOP	in	Java 3

Inheritance	in	Object	Oriented	Programming	(OOP)

v Inheritance is	a	form	of	software	reusability	in	which	new	classes	are	created	from	the	
existing	classes	by	absorbing	their	attributes	and	behaviours.

v Instead	of	defining	completely	(separate)	new	class,	the	programmer	can	designate	
that	the	new	class	is	to	inherit attributes	and	behaviours	of	the	existing	class	(called	
superclass).	The	new	class	is	referred	to	as	subclass.

v Programmer	can	add	more	attributes	and	behaviours	to	the	subclass,	hence,	
normally	subclasses have	more	features	than	their	super	classes.		

COMP2511:	OOP	in	Java 4

Inheritance	in	Object	Oriented	Programming	(OOP)
Inheritance relationships	form	tree-like	hierarchical	structures.		For	example,

COMP2511:	OOP	in	Java 5

“Is-a”	- Inheritance	relationship
v In	an	“is-a”	relationship,	an	object	of	a	subclass	may	also	be	treated	as	an	object	of	the	

superclass.		

v For	example,		UndergraduateStudent can	be	treated	as	Student too.		

v You	should	use	inheritance to	model	“is-a”	relationship.

Very	Important:	

v Don’t	use	inheritance	unless	all	or	most inherited	attributes	and	methods	make	sense.

v For	example,	mathematically	a	circle is-a	(an)	oval,	however	you	should	not inherit	a	class	circle
from	a	class	oval.		A	class	oval can	have	one	method	to	set	width and	another	to	set	height.

COMP2511:	OOP	in	Java 6

“Has-a”	- Association	relationship
v In	a	“has-a”	relationship,	a	class object	has	an	object	of	another	class to	store	its	state	or	do	its	

work,	i.e.	it	“has-a”	reference	to	that	other	object.		

v For	example,	a	Rectangle	Is-NOT-a	Line.		
However,	we	may	use	a	Line	to	draw	a	Rectangle.	

v The	“has-a”	relationship	is	quite	different	from	an	“is-a”	relationship.		

v “Has-a”	relationships	are	examples	of	creating	new	classes	by	composition of	existing	classes	(as	
oppose	to	extending classes).	

Very	Important:	

v Getting	“Is-a”	versus	“Has-a”	relationships	correct	is	both	subtle	and	potentially	critical.			You	
should	consider all	possible future	usages of	the	classes	before	finalising	the	hierarchy.		

v It	is	possible	that	obvious	solutions	may	not	work for	some	applications.

COMP2511:	OOP	in	Java 7

Designing	a	Class
• Think	carefully	about	the	functionality	(methods)	a	class	should	offer.

• Always	try	to	keep	data	private	(local).

• Consider	different	ways	an	object	may	be	created.

• Creating	an	object	may	require	different	actions	such	as	initializations.	

• Always	initialize	data.

• If	the	object	is	no	longer	in	use,	free	up	all	the	associated	resources.

• Break	up	classes	with	too	many	responsibilities.

• In	OO,	classes	are	often	closely	related.	“Factor	out”	common	attributes	and	behaviours	
and	place	these	in	a	class.	Then	use	suitable	relationships	between	classes	(for	example,	
“is-a”	or	“has-a”).	

COMP2511:	OOP	in	Java 8

Introduction	to	Classes	and	Objects
v A	class	is	a	collection	of	data and	methods (procedures)	that	operate	on	that	data.

v For	example,		
a	circle can	be	described	by	the	x,	y	position	of	its	centre	and	by	its	radius.	

v We	can	define	some	useful	methods	(procedures)	for	circles,
compute	circumference,		compute	area,	check	whether	pointes	are	inside	the	circle,	
etc.

v By	defining	the	Circle class	(as	below),	we	can	create	a	new	data	type.

COMP2511:	OOP	in	Java 9

The	class	Circle

v For	simplicity,	the	methods	for	getter and	
setters are	not	shown	in	the	code.	

COMP2511:	OOP	in	Java 10

Objects	are	Instances	of	a	class
In	Java,	objects	are	created	by	instantiating	a	class.

For	example,

Circle c ;
c = new Circle () ;

OR

Circle c = new Circle () ;

COMP2511:	OOP	in	Java 11

Accessing	Object	Data
We	can	access	data	fields	of	an	object.	
For	example,

Circle c = new Circle () ;

// Initialize our circle to have centre (2, 5)
// and radius 1.
// Assuming, x, y and r are not private

c.x = 2;
c.y = 5;
c.r = 1;

COMP2511:	OOP	in	Java 12

Using	Object	Methods
To	access	the	methods	of	an	object,	we	can	use	the	same	syntax	as	accessing	the	data	of	
an	object:

Circle c = new Circle () ;
double a;

c.r = 2; // assuming r is not private

a = c.area();

//Note that its not : a = area(c) ;

COMP2511:	OOP	in	Java 13

