COMP2511

Object Oriented Programming (OOP)
In Java

Prepared by
Dr. Ashesh Mahidadia

OOP in Java

Object Oriented Programming (OOP)
Inheritance in OOP

Introduction to Classes and Objects

Subclasses and Inheritance

Abstract Classes

Single Inheritance versus Multiple Inheritance
Interfaces

Method Forwarding (Has-a relationship)
Method Overriding (Polymorphism)

Method Overloading

Constructors

COMP2511: OOP in Java

Ashesh Mahidadia

Subclasses and Inheritance:
First Approach

We want to implement GraphicalCircle.

This can be achieved in at least 3 different ways.

First Approach:

\/

** In this approach we are creating the

new separate class for GraphicalCircle and
re-writing the code already available in the class
Circle.

» For example, we re-write the methods area and
circumference.

% Hence, this approach is NOT elegant, in fact its
the worst possible solution.
Note again, its the worst possible solution!

// The class of graphical circles

public class GraphicalCircle {

int x, vy;
int «r;
Color outline, fill;

public double circumference() {
return 2 * 3.14159 * r ;

}

public double area () {
return 3.14159 * r * r ;

}

public void draw(Graphics g) {
g.setColor (outline) ;
g.drawOval (x-r, y-r, 2*r, 2*r);
g.setColor (£fill) ;
g.filloval (x-r, y-r, 2*r, 2*r);

COMP2511: OOP in Java 14

Subclasses and Inheritance:
Second Approach

L)

* We want to implement GraphicalCircle so
that it can make use of the code in the class
Circle.

L)

% This approach uses “has-a” relationship.

» That means, a GraphicalCircle has a
(mathematical) Circle.

%* |t uses methods from the class Circle (area
and circumference) to define some of the
new methods.

L)

L)

* This technique is also known as method
forwarding.

COMP2511: OOP in Java

public class GraphicalCircle2 {

// here's the math circle

Circle c;

// The new graphics variables go here
Color outline, fill;

// Very simple constructor
public GraphicalCircle2() {
¢ = new Circle();
this.outline = Color.black;
this.fill = Color.white;

}

// Another simple constructor
public GraphicalCircle2(int x, int y, int r,
Color o, Color f) {
¢ = new Circle(x, y, r);
this.outline = o;
this.fill = f;
}

// draw method , using object ‘c'’
public void draw(Graphics g) {
g.setColor(outline);
g.drawOval(c.x - ¢c.r, c.y - c.r, 2 * ¢c.r, 2 * c.r);
g.setColor(fill);
g.fillOval(c.x - ¢.r, c.y - c.r, 2 * ¢c.r, 2 * c.r);

15

Subclasses and Inheritance:
Third Approach - Extending a Class

** We can say that GraphicalCircle is-a Circle.

% Hence, we can define GraphicalCircle as an
extension, or subclass of Circle.

% The subclass GraphicalCircle inherits all the
variables and methods of its superclass Circle.

import java.awt.Color;
import java.awt.Graphics;

public class GraphicalCircle extends Circle {

Color outline, fill;
public GraphicalCircle(){
super();
this.outline = Color.black;
this.fill = Color.white;
}
// Another simple constructor
public GraphicalCircle(int x, int vy,
int r, Color o, Color f){
super(x, y, r);
this.outline = o; this.fill = f;

}

public void draw(Graphics g) {
g.setColor(outline);
g.drawOval(x-r, y-r, 2*r, 2*%r);
g.setColor(fill);
g.fillOval(x-r, y-r, 2*r, 2*r);

COMP2511: OOP in Java

16

Subclasses and Inheritance: Example

We can assign an instance of GraphicCircle to a Circle variable. For example,

GraphicCircle gc = new GraphicCircle();
double area = gc.area();

Circle c¢ = gc;

\ 144

// we cannot call draw method for C

Important:

+» Considering the variable “c” is of type Circle,

** we can only access attributes and methods available in the class Circle.

R/

%* we cannot call draw method for “c”.

COMP2511: OOP in Java

17

Super classes, Objects, and the Class Hierarchy

/

** Every class has a superclass.

s If we don’t define the superclass, by default, the superclass is the class Object.

Object Class :

R/

s Its the only class that does not have a superclass.

s The methods defined by Object can be called by any Java object (instance).

s Often we need to override the following methods:
* toString()

o read the API at https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Object.html#toString()

* equals()
o read the API at
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Object.html#equals(java.lang.Object)

* hasCode ()

COMP2511: OOP in Java 18

Abstract Classes

Using abstract classes,

* we can declare classes that define only part of an implementation,

** leaving extended classes to provide specific implementation of some or all the
methods.

The benefit of an abstract class
% is that methods may be declared such that the programmer knows the interface
definition of an object,
** however, methods can be implemented differently in different subclasses of the
abstract class.

COMP2511: OOP in Java 19

Abstract Classes

Some rules about abstract classes:

s An abstract class is a class that is declared abstract.
s If a class includes abstract methods, then the class itself must be declared abstract.
* An abstract class cannot be instantiated.

% A subclass of an abstract class can be instantiated if it overrides each of the abstract
methods of its superclass and provides an implementation for all of them.

s If a subclass of an abstract class does not implement all the abstract methods it
inherits, that subclass is itself abstract.

COMP2511: OOP in Java 20

Abstract Class: Example

Shape
Circle Réctangle
public abstract class Shape {

public abstract double area();
public abstract double circumference();

COMP2511:

public class Circle extends Shape {

protected static final double pi = 3.14159;
protected int x, y;
protected int r;

// Very simple constructor
public Circle()

this.x = 1;
this.y = 1;
this.r = 1;
}
// Another simple constructor
public Circle(int x, int y, int r){
this.x = x;
this.y = y;
this.r = r;
}
/ -

* Below, methods that return the circumference
* area of the circle
*/
public double circumference() {
return 2 * pi * r ;
}
public double area () {
return pi *r *r ;

}
}

OOP inJava 21

Abstract Class: Example

Shape

e

Circle Réctangle

public abstract class Shape {

public abstract double area();
public abstract double circumference();

}

COMP2511: OOP in Java

public class Rectangle extends Shape {

protected double width, height;

public Rectangle() {

}

width = 1.0;
height = 1.0;

public Rectangle(double w, double h) {

}

this.width = w;
this.height = h;

public double area()({

}

return width*height;

public double circumference() {

}

return 2*(width + height);

22

Abstract Class: Example

Some points to note:

** As Shape is an abstract class, we cannot
instantiate it.

» Instantiations of Circle and Rectangle can be
assigned to variables of Shape.
No cast is necessary

» In other words, subclasses of Shape can be
assigned to elements of an array of Shape.
No cast is necessary.

** We can invoke area() and circumference()

Shape

AN

Circle Réctangle

We can now write code like this:

// create an array to hold shapes
Shape[] shapes = new Shape[4];

shapes[0] = new Circle(4, 6, 2);
shapes[1l] = new Rectangle(1.0, 3.0);
shapes[2] = new Rectangle(4.0, 2.0);
shapes[3] = new GraphicalCircle(1l, 1, 6,

Color.green, Color.yellow);

double total area = 0;

for(int i = 0; i < shapes.length; i++) {
// compute the area of the shapes

—> total area += shapes[i].area(); |

methods for Shape objects.

y -

COMP2511: OOP in Java 23

Single Inheritance versus Multiple Inheritance

* In Java, a new class can extend exactly one superclass - a
model known as single inheritance.

* Some object-oriented languages employ multiple
inheritance, where a new class can have two or more super
classes.

* In multiple inheritance, problems arise when a superclass’s
behaviour is inherited in two/multiple ways.

* Single inheritance precludes some useful and correct
designs.

* In Java, interface in the class hierarchy can be used to add
multiple inheritance, more discussions on this later.

COMP2511: OOP in Java

2N
X Y
N,

Diamond inheritance
problem

24

Interfaces in Java

Interfaces are like abstract classes, but with few important differences.

All the methods defined within an interface are implicitly abstract. (We don’t need to
use abstract keyword, however, to improve clarity one can use abstract keyword).

Variables declared in an interface must be static and final, that means,
they must be constants.

Just like a class extends its superclass, it also can optionally implements an interface.

In order to implement an interface, a class must first declare the interface in an
implements clause, and then it must provide an implementation for all of the abstract

methods of the interface.
A class can “implements” more than one interfaces.

More discussions on “interfaces” later in the course.

COMP2511: OOP in Java

25

Interfaces in Java: Example

public interface Drawable {
public void setColor (Color c);
public void setPosition(double x, double y);
public void draw(Graphics g);

}

public class DrawableRectangle

Shapes Drawable extends Rectangle
" implements Drawable ({

Cir€le Rectangle -- private Color c;
) / private double x, y;

// Here are implementations of the

// mehtods in Drawable

// we also inherit all public methods
// of Rectangle

public void setColor(Color c) { this.c = c;}
public void setPosition(double x, double y) {
this.x = x; this.y = y;}
public void draw(Graphics g) {
g.drawRect (x,y,w,h,c); }

COMP2511: OOP in Java

Shape[] shapes = new Shape[3];
Drawable[] drawables = new Drawable[3];

Using Interfaces: Example

DrawableCircle dc = new DrawableCircle(1l.1);
DrawableSquare ds = new DrawableSquare(2.5);
DrawableRectangle dr = new DrawableRectangle (2.3,

4.5);
.] // The shapes can be assigned to both arrays
** When a class implements an shapes[0] = dc; drawables[0] = dc;
interface, instance of that class can | shapes[l] = ds; drawables[l] = ds;
also be assigned to variables of the shapes[2] = ooy drawables(2] = dr/
interface type. // We can invoke abstract method

// in Drawable and Shapes

double total area = 0;
for(int i=0; i< shapes.length; i++) {

total area += shapes[i].area();

N

drawables[i] .setPosition(i*10.0, i*10.0);

// assume that graphic area ‘g’ is
\ // defined somewhere
drawables[i] .draw(qg) ;

}

COMP2511: OOP in Java 27

Implementing Multiple Interfaces

A class can implements more than one interfaces. For example,

Shapes Drawable Scalable Movable

Circle Rectangle

DrawableCircle DrawableRectangle

DrawabIeSCaIabIeRectangIe

public class DrawableScalableRectangle
extends DrawableRectangle
implements Movable, Scalable {
// methods go here

}

COMP2511: OOP in Java

28

Extending Interfaces

** Interfaces can have sub-interfaces, just like classes can have subclasses.

s A sub-interface inherits all the abstract methods and constants of its super-interface,
and may define new abstract methods and constants.

¢ Interfaces can extend more than one interface at a time. For example,

public interface Transformable
extends Scalable,Rotable,Reflectable {}

public interface DrawingObject
extends Drawable, Transformable({}

public class Shape implements DrawingObject {
}

COMP2511: OOP in Java

Method Forwarding E/A\c X

Suppose class C extends class A, and also implements interface X.

As all the methods defined in interface X are abstract, class C needs to implement all
these methods.

However, there are three implementations of X (in P,Q,R).

In class C, we may want to use one of these implementations, that means, we may
want to use some or all methods implemented in P, Q or R.

Say, we want to use methods implemented in P. We can do this by creating an object
of type class P in class C, and through this object access all the methods implemented
in P.

Note that, in class C, we do need to provide required stubs for all the methods in the

interface X. In the body of the methods we may simply call methods of class P via the
object of class P.

This approach is also known as method forwarding.
COMP2511: OOP in Java

30

Methods Overriding (Polymorphism)

** When a class defines a method using the same name, return type,
and by the number, type, and position of its arguments as a method in its superclass,
the method in the class overrides the method in the superclass.

* If a method is invoked for an object of the class, it’s the new definition of the method
that is called, and not the superclass’s old definition.

Polymorphism

* An object’s ability to decide what method to apply to itself, depending on where
itis in the inheritance hierarchy, is usually called polymorphism.

COMP2511: OOP in Java

31

Methods Overriding: Example

In the example below,

» if pisaninstance of class B,
p.f() refers to f() in class B.

** Howeuver, if p is an instance of class A,
p.f() refers to f() in class A.

The example also shows how to refer to the overridden method using super keyword.

class A {
int i = 1;
int £() { return i;}

}
class B extends A {
int i; Il shadows i from A
int £() { Il overrides f() from A
i = super.i + 1; Il retrives i from A

return super.f() + i; Il invokes f() from A

COMP2511: OOP in Java

Methods Overriding: Example
Suppose class Cis a subclass of class B, and class B is a subclass of class A.
Class A and class C both define method £ ().
From class C, we can refer to the overridden method by,
super. f ()

This is because class B inherits method £ () from class A.

However,

«»» if all the three classes define £ (), then
calling super. £ () in class C invokes class B’s definition of the method.

s Importantly, in this case, there is no way to invoke A. £ () from within class C.

/

** Note that super.super. £ () is NOT legal Java syntax.

COMP2511: OOP in Java

33

Method Overloading

Defining methods with the same name and different argument or return types is called
method overloading.

In Java,

* a method is distinguished by its method signature - its name, return type, and by the
number, type, and position of its arguments

For example,
double add(int, 1int)
double add(int, double)
double add(float, int)
double add(int, int, int)
double add(int, double, int)

COMP2511: OOP in Java

Data Hiding and Encapsulation

We can hide the data within the class and make it available only through the methods.

This can help in maintaining the consistency of the data for an object, that means the state
of an object.

Visibility Modifiers

Java provides five access modifiers (for variables/methods/classes),

** public - visible to the world
¢ private - visible to the class only
s protected - visible to the package and all subclasses

** No modifier (default) - visible to the package

COMP2511: OOP in Java 35

Constructors

\/
0‘0

7
0’0

.0

o0

L)

4

L X 4

L)

<&

o0

L)

Good practice to define the required constructors for all classes.

If a constructor is not defined in a class,
o no-argument constructor is implicitly inserted.
o this no-argument constructor invokes the superclass’s no-argument constructor.

o if the parent class (superclass) doesn’t have a visible constructor with no-argument,

it results in a compilation error.

If the first statement in a constructor is not a call to super() or this(),
a call to super () is implicitly inserted.

If a constructor is defined with one or more arguments,
no-argument constructor is not inserted in that class.

A class can have multiple constructors, with different signatures.

The word “this” can be used to call another constructor in the same class.

COMP2511: OOP in Java

36

Diamond Inheritance Problem: A Possible Solution

Using single inheritance in Java:

X Y
Using multiple inheritance (in C++): / \ ic:es;avge{l}y 0 \
Z
class X extends W { }
: . class Y extends W implements 1Y { }
we achieve the following: \ / class Z extends X implements 1Y {}
e Inclass Z, we can use methods and
variables defined in X, Wand Y. we achieve the following:
* Objects of classes Z and Y can be assigned to variables of type Y. e Inclass Z, we can use methods and variables defined in X and W.
* andmore ... In class Z, if we want to use methods implemented in class Y, we

can use method forwarding technique. That means, in class Z, we
can create an object of type class Y, and via this object we can
access (in class Z) all the methods defined in class Y.

e Objects of classes Z and Y can be assigned to variables of type IY
(instead of Y).

e and more

COMP2511: OOP in Java 37

Some References to Java Tutorials

** https://docs.oracle.com/javase/tutorial/

¢ https://www.w3schools.com/java/default.asp

¢ https://www.tutorialspoint.com/java/index.htm

COMP2511: OOP in Java

38

