
COMP2511

Object	Oriented	Programming	(OOP)
in	Java

Prepared	by
Dr.	Ashesh Mahidadia

Java	is	Platform	Independent

Windows

JRE

Windows

JRE

Solaris

JRE

©	Aarthi	Natarajan,	2018

The	Java	Platform

Object	Oriented

Distributed

Simple

Platform-
Independent

Multi-threaded

Secure

JAVA

Java	Code
(.java)

Java	Byte	
Code
(.class)

Java	compiler

Memory	
Management

©	Aarthi	Natarajan,	2018

OOP	in	Java

v Object	Oriented	Programming	(OOP)	

v Inheritance	in	OOP	

v Introduction	to	Classes	and	Objects	

v Subclasses	and	Inheritance	

v Abstract	Classes	

v Single	Inheritance	versus	Multiple	Inheritance	

v Interfaces	

v Method	Forwarding	(Has-a	relationship)

v Method	Overriding	(Polymorphism)

v Method	Overloading

v Constructors

COMP2511:	OOP	in	Java 2

Object	Oriented	Programming	(OOP)
In	procedural	programming	languages	(like	‘C’),	programming	tends	to	be	action-oriented,	

whereas	in	Java	- programming	is	object-oriented.

In	procedural programming,

• groups	of	actions	that	perform	some	task	are	formed	into	functions	and	functions	are	grouped	to	
form	programs.

In	OOP,	

• programmers	concentrate	on	creating	their	own	user-defined	types	called	classes.	

• each	class	contains	data	as	well	as	the	set	of	methods	(procedures)	that	manipulate	the	data.		

• an	instance	of	a	user-defined	type	(i.e.	a	class)	is	called	an	object.
• OOP	encapsulates data	(attributes)	and	methods	(behaviours)	into	objects,		the	data	and	methods	
of	an	object	are	intimately	tied	together.

• Objects	have	the	property	of	information hiding.
COMP2511:	OOP	in	Java 3

Inheritance	in	Object	Oriented	Programming	(OOP)

v Inheritance is	a	form	of	software	reusability	in	which	new	classes	are	created	from	the	
existing	classes	by	absorbing	their	attributes	and	behaviours.

v Instead	of	defining	completely	(separate)	new	class,	the	programmer	can	designate	
that	the	new	class	is	to	inherit attributes	and	behaviours	of	the	existing	class	(called	
superclass).	The	new	class	is	referred	to	as	subclass.

v Programmer	can	add	more	attributes	and	behaviours	to	the	subclass,	hence,	
normally	subclasses have	more	features	than	their	super	classes.		

COMP2511:	OOP	in	Java 4

Inheritance	in	Object	Oriented	Programming	(OOP)
Inheritance relationships	form	tree-like	hierarchical	structures.		For	example,

COMP2511:	OOP	in	Java 5

“Is-a”	- Inheritance	relationship
v In	an	“is-a”	relationship,	an	object	of	a	subclass	may	also	be	treated	as	an	object	of	the	

superclass.		

v For	example,		UndergraduateStudent can	be	treated	as	Student too.		

v You	should	use	inheritance to	model	“is-a”	relationship.

Very	Important:	

v Don’t	use	inheritance	unless	all	or	most inherited	attributes	and	methods	make	sense.

v For	example,	mathematically	a	circle is-a	(an)	oval,	however	you	should	not inherit	a	class	circle
from	a	class	oval.		A	class	oval can	have	one	method	to	set	width and	another	to	set	height.

COMP2511:	OOP	in	Java 6

“Has-a”	- Association	relationship
v In	a	“has-a”	relationship,	a	class object	has	an	object	of	another	class to	store	its	state	or	do	its	

work,	i.e.	it	“has-a”	reference	to	that	other	object.		

v For	example,	a	Rectangle	Is-NOT-a	Line.		
However,	we	may	use	a	Line	to	draw	a	Rectangle.	

v The	“has-a”	relationship	is	quite	different	from	an	“is-a”	relationship.		

v “Has-a”	relationships	are	examples	of	creating	new	classes	by	composition of	existing	classes	(as	
oppose	to	extending classes).	

Very	Important:	

v Getting	“Is-a”	versus	“Has-a”	relationships	correct	is	both	subtle	and	potentially	critical.			You	
should	consider all	possible future	usages of	the	classes	before	finalising	the	hierarchy.		

v It	is	possible	that	obvious	solutions	may	not	work for	some	applications.

COMP2511:	OOP	in	Java 7

Designing	a	Class
• Think	carefully	about	the	functionality	(methods)	a	class	should	offer.

• Always	try	to	keep	data	private	(local).

• Consider	different	ways	an	object	may	be	created.

• Creating	an	object	may	require	different	actions	such	as	initializations.	

• Always	initialize	data.

• If	the	object	is	no	longer	in	use,	free	up	all	the	associated	resources.

• Break	up	classes	with	too	many	responsibilities.

• In	OO,	classes	are	often	closely	related.	“Factor	out”	common	attributes	and	behaviours	
and	place	these	in	a	class.	Then	use	suitable	relationships	between	classes	(for	example,	
“is-a”	or	“has-a”).	

COMP2511:	OOP	in	Java 8

Introduction	to	Classes	and	Objects
v A	class	is	a	collection	of	data and	methods (procedures)	that	operate	on	that	data.

v For	example,		
a	circle can	be	described	by	the	x,	y	position	of	its	centre	and	by	its	radius.	

v We	can	define	some	useful	methods	(procedures)	for	circles,
compute	circumference,		compute	area,	check	whether	pointes	are	inside	the	circle,	
etc.

v By	defining	the	Circle class	(as	below),	we	can	create	a	new	data	type.

COMP2511:	OOP	in	Java 9

The	class	Circle

v For	simplicity,	the	methods	for	getter and	
setters are	not	shown	in	the	code.	

COMP2511:	OOP	in	Java 10

Objects	are	Instances	of	a	class
In	Java,	objects	are	created	by	instantiating	a	class.

For	example,

Circle c ;
c = new Circle () ;

OR

Circle c = new Circle () ;

COMP2511:	OOP	in	Java 11

Accessing	Object	Data
We	can	access	data	fields	of	an	object.	
For	example,

Circle c = new Circle () ;

// Initialize our circle to have centre (2, 5)
// and radius 1.
// Assuming, x, y and r are not private

c.x = 2;
c.y = 5;
c.r = 1;

COMP2511:	OOP	in	Java 12

Using	Object	Methods
To	access	the	methods	of	an	object,	we	can	use	the	same	syntax	as	accessing	the	data	of	
an	object:

Circle c = new Circle () ;
double a;

c.r = 2; // assuming r is not private

a = c.area();

//Note that its not : a = area(c) ;

COMP2511:	OOP	in	Java 13

Subclasses	and	Inheritance:	
First	Approach
We	want	to	implement		GraphicalCircle.	

This	can	be	achieved	in	at	least	3	different	ways.

First	Approach:

v In	this	approach	we	are	creating	the	
new	separate	class	for	GraphicalCircle and	
re-writing the	code	already	available	in	the	class	
Circle.	

v For	example,	we	re-write	the	methods	area and	
circumference.	

v Hence,	this	approach	is	NOT	elegant,	in	fact	its	
the	worst	possible	solution.
Note	again, its	the	worst	possible	solution!

COMP2511:	OOP	in	Java 14

Subclasses	and	Inheritance:	
Second	Approach

v We	want	to	implement		GraphicalCircle so	
that	it	can	make	use	of	the	code	in	the	class	
Circle.

v This	approach	uses	“has-a”	relationship.

v That	means,	a	GraphicalCircle has	a	
(mathematical)	Circle.

v It	uses	methods	from	the	class	Circle	(area
and	circumference)	to	define	some	of	the	
new	methods.		

v This	technique	is	also	known	as	method	
forwarding.

COMP2511:	OOP	in	Java 15

Subclasses	and	Inheritance:	
Third	Approach	- Extending	a	Class

v We	can	say	that	GraphicalCircle is-a Circle.		

v Hence,	we	can	define	GraphicalCircle as	an	
extension,	or	subclass of	Circle.

v The	subclass	GraphicalCircle inherits all	the	
variables	and	methods	of	its	superclass	Circle.

COMP2511:	OOP	in	Java 16

Subclasses	and	Inheritance:		Example	
We	can	assign	an	instance	of	GraphicCircle to	a	Circle variable.		For	example,

GraphicCircle gc = new GraphicCircle();
...

double area = gc.area();
...

Circle c = gc;
// we cannot call draw method for “c”.

Important:

v Considering	the	variable	“c”	is	of	type	Circle,	

v we	can	only	access	attributes	and	methods	available	in	the	class Circle.	

v we	cannot call	drawmethod	for		“c”.	

COMP2511:	OOP	in	Java 17

Super	classes,	Objects,	and	the	Class	Hierarchy
v Every	class	has		a	superclass.
v If	we	don’t	define	the	superclass,	by	default,	the	superclass	is	the	class	Object.

Object Class	:
v Its	the	only	class	that	does	not	have	a	superclass.
v The	methods	defined	by	Object	can	be	called	by	any	Java	object	(instance).
v Often	we	need	to	override the	following	methods:

• toString()
o read	the	API	at	https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Object.html#toString()

• equals()
o read	the	API	at	

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Object.html#equals(java.lang.Object)
• hasCode()

COMP2511:	OOP	in	Java 18

Abstract	Classes
Using	abstract classes,	

v we	can	declare	classes	that	define	only part	of	an	implementation,			
v leaving	extended	classes	to	provide	specific	implementation	of	some	or	all	the	

methods.

The	benefit	of	an	abstract	class	
v is	that	methods	may	be	declared	such	that	the	programmer	knows	the	interface	

definition	of	an	object,
v however,	methods	can	be	implemented	differently in	different	subclasses	of	the	

abstract	class.

COMP2511:	OOP	in	Java 19

Abstract	Classes
Some	rules	about	abstract	classes:

v An	abstract	class	is	a	class	that	is	declared	abstract.

v If	a	class	includes abstract	methods,	then	the	class	itself	must	be	declared	abstract.

v An	abstract	class	cannot	be	instantiated.

v A	subclass	of	an	abstract	class	can	be	instantiated	if	it	overrides	each	of	the	abstract	
methods	of	its	superclass	and	provides	an	implementation for	all of	them.

v If	a	subclass	of	an	abstract	class	does	not	implement	all	the	abstract	methods	it	
inherits,	that	subclass	is	itself	abstract.	

COMP2511:	OOP	in	Java 20

Abstract	Class:	Example

COMP2511:	OOP	in	Java 21

Abstract	Class:	Example

COMP2511:	OOP	in	Java 22

Abstract	Class:	Example

COMP2511:	OOP	in	Java 23

We	can	now	write	code	like	this:

Some	points	to	note:

v As	Shape is	an	abstract	class,	we	cannot	
instantiate	it.

v Instantiations	of	Circle and	Rectangle can	be	
assigned	to	variables	of	Shape.				
No	cast	is	necessary

v In	other	words,	subclasses	of	Shape can	be	
assigned	to	elements	of	an	array	of	Shape.			
No	cast	is	necessary.

v We	can	invoke	area()	and	circumference()	
methods	for	Shape objects.

Single	Inheritance	versus	Multiple	Inheritance	

• In	Java,	a	new	class	can	extend	exactly	one	superclass	- a	
model	known	as	single	inheritance.

• Some	object-oriented	languages	employ	multiple
inheritance,	where	a	new	class	can	have	two	or	more	super	
classes.

• In	multiple	inheritance,	problems arise	when	a	superclass’s	
behaviour	is	inherited	in	two/multiple	ways.

• Single	inheritance	precludes	some	useful	and	correct	
designs.

• In	Java,	interface	in	the	class	hierarchy	can	be	used	to	add	
multiple	inheritance,	more	discussions	on	this	later.	

COMP2511:	OOP	in	Java 24

Diamond	inheritance	
problem	

Interfaces	in	Java

v Interfaces	are	like	abstract	classes,	but	with	few	important	differences.

v All	the	methods	defined	within	an	interface	are	implicitly	abstract.		(We	don’t	need	to	
use	abstract	keyword,	however,	to	improve	clarity	one	can	use	abstract	keyword).

v Variables declared	in	an	interface	must	be	static	and	final,	that	means,	
they	must	be	constants.

v Just	like	a	class	extends	its	superclass,	it	also	can	optionally	implements	an	interface.	

v In	order	to	implement	an	interface,	a	class	must	first		declare	the	interface	in	an	
implements	clause,	and	then	it	must	provide	an	implementation	for	all	of	the	abstract	
methods	of	the	interface.

v A	class	can	“implements”	more than	one	interfaces.

v More	discussions	on	“interfaces” later	in	the	course.	

COMP2511:	OOP	in	Java 25

Interfaces	in	Java:	Example

COMP2511:	OOP	in	Java 26

Using	Interfaces:	Example

v When	a	class	implements an	
interface,	instance	of	that	class	can	
also	be	assigned	to	variables	of	the	
interface	type.

COMP2511:	OOP	in	Java 27

Implementing	Multiple	Interfaces	

COMP2511:	OOP	in	Java 28

A	class	can	implements more	than	one	interfaces.	For	example,	

Extending	Interfaces

v Interfaces	can	have	sub-interfaces,	just	like	classes	can	have	subclasses.	
v A	sub-interface	inherits	all	the	abstract	methods	and	constants	of	its	super-interface,	

and	may	define	new	abstract	methods	and	constants.	
v Interfaces	can	extend	more	than	one	interface	at	a	time.	For	example,	

COMP2511:	OOP	in	Java 29

Method	Forwarding

v Suppose	class	C	extends	class	A,	and	also	implements	interface	X.
v As	all	the	methods	defined	in	interface	X	are	abstract,		class	C	needs	to	implement	all	

these	methods.		
v However,		there	are	three	implementations	of	X		(in	P,Q,R).
v In	class	C,	we	may	want	to	use	one	of	these	implementations,	that	means,	we	may	

want	to	use	some	or	all	methods	implemented	in	P,	Q	or	R.			
v Say,	we	want	to	use	methods	implemented	in	P.		We	can	do	this	by	creating	an	object	

of	type	class	P	in	class	C,	and	through	this	object	access	all	the	methods	implemented	
in	P.

v Note	that,	in	class	C,	we	do	need	to	provide	required	stubs	for	all	the	methods	in	the	
interface	X.		In	the	body	of	the	methods	we	may	simply	call	methods	of	class	P	via	the	
object	of	class	P.			

v This	approach	is	also	known	as	method	forwarding.
COMP2511:	OOP	in	Java 30

Methods	Overriding	(Polymorphism)

v When	a	class	defines	a	method	using	the	same name,	return	type,	
and	by	the	number,	type,	and	position	of	its	arguments	as	a	method	in	its	superclass,	
the	method	in	the	class	overrides the	method	in	the	superclass.

v If	a	method	is	invoked	for	an	object	of	the	class,	it’s	the	new	definition	of	the	method	
that	is	called,	and	not the	superclass’s	old	definition.

Polymorphism
• An	object’s	ability	to	decide	what	method	to	apply	to	itself,	depending	on	where	
it	is	in	the	inheritance	hierarchy,	is	usually	called	polymorphism.

COMP2511:	OOP	in	Java 31

Methods	Overriding:	Example
In	the	example	below,	

v if		p is	an	instance	of	class	B,	
p.f() refers	to	f() in	class	B.		

v However,	if	p	is	an	instance	of	class	A,	
p.f() refers	to	f() in	class	A.

The	example	also	shows	how	to	refer	to	the	overridden method	using	super keyword.

COMP2511:	OOP	in	Java 32

Methods	Overriding:	Example
Suppose	class	C	is	a	subclass	of	class	B,	and	class	B	is	a	subclass	of	class	A.		

Class	A	and	class	C	both	define	method	f().

From	class	C,	we	can	refer	to	the	overridden	method	by,

super.f()

This	is	because	class	B	inherits	method	f() from	class	A.

However,	

v if		all	the	three	classes	define	f(),		then	
calling	super.f() in	class	C	invokes	class	B’s	definition	of	the	method.

v Importantly,	in	this	case,	there	is	no	way	to	invoke	A.f() from	within	class	C.

v Note	that	super.super.f() is	NOT legal Java	syntax.
COMP2511:	OOP	in	Java 33

Method	Overloading
Defining	methods	with	the	same	name	and	different	argument	or	return	types	is	called	
method	overloading.

In	Java,		
v a	method	is	distinguished	by	its	method	signature	- its	name,	return	type,	and	by	the	

number,	type,	and	position	of	its	arguments

For	example,		
double add(int, int)
double add(int, double)
double add(float, int)
double add(int, int, int)
double add(int, double, int)

COMP2511:	OOP	in	Java 34

Data	Hiding	and	Encapsulation
We	can	hide the	data within	the	class	and	make	it	available	only	through	the	methods.		

This	can	help	in	maintaining	the	consistency	of	the	data	for	an	object,	that	means	the	state	
of	an	object.

Visibility	Modifiers
Java	provides	five	access	modifiers	(for	variables/methods/classes),

v public - visible	to	the	world
v private - visible	to	the	class	only
v protected - visible	to	the	package	and	all	subclasses
v No	modifier	(default) - visible	to	the	package

COMP2511:	OOP	in	Java 35

Constructors	
v Good	practice	to	define	the	required	constructors	for	all classes.
v If	a	constructor	is	not	defined	in	a	class,	

o no-argument constructor	is	implicitly inserted.	
o this	no-argument	constructor	invokes	the	superclass’s	no-argument	constructor.	
o if	the	parent	class	(superclass)	doesn’t	have	a	visible	constructor	with	no-argument,	

it	results	in	a	compilation	error.	
v If	the first	statement	in	a	constructor	is	not a	call	to	super()	or	this(),	

a	call	to	super ()	is	implicitly inserted.
v If	a	constructor	is	defined with	one	or	more	arguments,	

no-argument	constructor	is	not inserted	in	that	class.
v A	class	can	have	multiple	constructors,	with	different	signatures.
v The	word	“this”	can	be	used	to	call	another	constructor	in	the	same	class.

COMP2511:	OOP	in	Java 36

Diamond	Inheritance	Problem:	A	Possible	Solution

COMP2511:	OOP	in	Java 37

Some	References	to	Java	Tutorials

v https://docs.oracle.com/javase/tutorial/

v https://www.w3schools.com/java/default.asp

v https://www.tutorialspoint.com/java/index.htm

COMP2511:	OOP	in	Java 38

