System Modelling and Design

Introduction to the B Method and B Toolkit

mailto:

Contents

3.1 Some Terminology|

4 Notation

6.4 Operations|.

Revision: 1.1, March 3, 2007

Ken Robinson

March 3, 2007

(©XKen Robinson 2005

:k.robinson@unsw.edu.au

mailto::k.robinson@unsw.edu.au

[6.6 Trivial preconditions| L L 8
[6.7 Problem with the PiggyBank Machine| 8
[6.8 Proof obligation generation and proof| 8
[6.9 Viewing the proof obligations|. L o 8
[6.10 Adding a non-trivial precondition|. oL L o 9
[6.11 Towards understanding preconditions| 9
[6.12 'Total and Partial operations: preconditions| 9

[7~ Modelling a Coffee Club| 9
I A CoffeeClubmachinel 10

2 me n nmachineinclusionl. L Lo 11
Problems with CoffeeClubl L 11

[/.4 Identifying and fixing the problems|. L L L. 12

[8 Specifying a Robust machine] 13
[9 A Question of Identity| 15

1 B Mathematical Toolkit

The mathematical toolkit of the B Method (B) is based on

set theory simple set theory, consisting of aggregates having no ordering and no multiplicity. The only
property possessed by a value and a set is membership of the set.

logic first-order predicate calculus. A predicate is a function from variables to Boolean. The first-order
calculus allows quantification only over variables, not predicates for example.

Numbers Although B allows opaque types, essentially all numbers in a B development are eventually
natural numbers, because real computers consist of binary numerals. B does not contain infinity
and all implementable sets are finite. The set of natural numbers (N) is infinite and hence is not
implementable.

NpisN—{0}

2 Set Theory

B uses sets to model other mathematical constructs such as: relations, functions, sequences.

The base for modelling with sets are

powerset P(.S), the powerset of the set .S, is the set of all subsets of S. P(.S) always contains the empty
set.

IP, () is the set of all non-empty subsets of S.

2

product X x Y, the product of X and Y, is the set of ordered pairs with the first element from X and
the second from V, X x Y ={z,y|lze X Aye Y }.

2.1 Relations

A relation is a set of ordered pairs between the members of two sets.
X < Y is the set of all many-to-many relations between X and Y.
X—Y=PXxY

2.2 Functions

set of partial functions

set of total functions

set of partial injection (one-to-one)

set of total injection

set of partial surjection (onto)

set of total surjection

set of total bijection (one-to-one and onto)

e
| A A
<

3 Predicate Calculus

3.1 Some Terminology

The following terms will be used frequently:

predicate a predicate is a partial function from variables (state) to Boolean. The predicate is usually
expressed as a closed expression, e.g. amount < balance(customer).

satisfies we talk of some variables satisfying a predicate. This means that substituting the values of the
variables into the predicate will make the predicate frue.

stronger and weaker if P = () we frequently say that, “P is stronger than ()", although strictly we
should say, “P is at least as strong as (). Similarly, we might say “() is weaker than P”.

In the same vein we will talk of strengthening or weakening a predicate. Strengthening a predicate

subsets the set of values that satisfy the predicate. Weakening a predicate supersets the set of values that
satisfy the predicate.

4 Notation

All components of a B development will have a source form, used to specify machines and other input
to the B-Toolkit, and a publication form used in documentation.

The notation for the source form will be ASCI I. For example,

account : ACCOUNT

means the variable account is an element of the set ACCOUNT.
The notation for publication will is marked up high quality mathematics. For example,

account € ACCOUNT,

which has the same meaning as the ASCI T example.

4.1 Abstract Machines
B uses Abstract Machines, which are machines that encapsulate:

state consisting of a set of variables constrained by an invariant

operations operations may change the state, while maintaining the invariant, and may return a sequence
of results.

4.2 Machine Variables in B

For technical reasons that will not be explained now, machine variables in B must have at least two
characters. Thus xx is a valid variable, while x is not.

Warning: this is likely to cause many mysterious problems in your first attempts to write B machines.
The error messages of the B-Toolkit will not clearly identify the problem!

Where single letters are used in describing the notation, those letters represent context dependent ex-
pressions, which include proper variables.

4.3 Object based

e Abstract machines are sometimes described as object-based, rather than object-oriented.
e You will notice that a machine can be compared with an object, that is, an instance of a class.

e Importantly, a machine does not behave as a class, although it is possible to model a class.

4.4 Substitutions

The foundation of B operations is a language called the Generalised Substitution Language or GSL. The
GSL notation will not be described in this lecture. The elements of GSL are called substitutions, which
have a role similar to statements or commands in a conventional programming language.

A substitution is a construct that, in some way, changes the state by substituting values into variables of
the state.

The concept of the substitution is founded on the basic notion that the only way a state machine makes
progress is by changing the value of the state.

We won’t describe the GSL at this stage, but we will note that there are only 11 basis substitutions in the
GSL.

Substitutions are given a formal semantics that in turn is expressed in in terms of substitution of values;
thus the word “substitution” is a pun.

4.5 Abstract Machine Notation

Abstract Machine Notation (AMN) is the notation used to describe Abstract Machines.
AMN also incorporates a syntactic dressing up of the basic generalized substitution language (GSL).

AMN gives B an appearance and a feel of a programming language, although the level of abstraction is
not changed by this syntactic sugaring.

We will use only a few AMN constructs here.

5 The B-Toolkit

The B-Toolkit is a configuration management tool that provides the following facilities:

introduction of new machines syntax and type analysis
animation of specifications generation of proof obligations
automatic & interactive proof introduction of user theories
markup of machines maintenance of documents
generation of code generation of interfaces
execution of generated code generation of base machines
automatic remakes browsing of designs & specifications
hypertext displays of machines online help

5.1 The B-Toolkit interface

The interface of the B-Toolkit is very compact, but has a large number of configurations.

Menu bar the top line contains menus that control the functions of the toolkit.

Environments Below the menu bar is a set of environments: Main, Provers, etc that present different
views on the development process.

Machine panel below the Environments is a panel that contains the names of machines or other con-
structs. This panel contains colour coded buttons that provide access to one of the functions of the
toolkit.

Log panel at the bottom is another panel that contains a log of the interactions for the current session.

5.2 Introducing a new machine

To introduce a new machine you would select Introduce/New/Machine in the Main environment of the
B-Toolkit.

Having introduced the machine, a template will appear in your editor. The machine should be “filled in”
and saved.

Then the machine should be committed and analyzed, by selecting the cmt (commit) and an/ (analyze)
buttons in the Main environment.

6 A Simple Model

As a first simple model we will take a simple coffee club, but we will do it in two steps.

First we will model a “piggy bank” into which we can feed money and also take money out using the

following operations:

Feedbank (amount)

RobBank (amount)

money «— CashLeft

Feed amount cents to the piggybank.

Rob the piggybank of amount cents.

Query the piggybank to obtain the amount of money left in the
piggybank.

In order to model the operations we will use a variable piggybank whose value is a natural number,
representing the contents of the piggybank in cents.

Let’s step through the specification of a machine that “owns” and manages the piggy bank.

MACHINE PiggyBank0
VARIABLES piggybank
INVARIANT piggybank € N

INITIALISATION piggybank := 0

OPERATIONS

FeedBank (amount) =

pre amount € N then

piggybank = piggybank + amount

end ;
RobBank (amount) =
pre amount € N then

piggybank := piggybank — amount

end ;
money «—— CashLeft =
begin
money = piggybank
end
END

6.1 Machine Structure

MACHINE name set and numeric parameters
CONSTRAINTS predicate
INCLUDES/SEES/USES machine parameters
SETS names

CONSTANTS names

PROPERTIES predicate

VARIABLES names

INVARIANT predicate
INITIALISATION substitution
OPERATIONS operations

END

In general, the clauses of a machine can appear in any order, although machines are stored and marked up accord-
ing to a canonic structure.

6.2 ...Machine Structure

Note the hierarchy of constraints (clauses consisting of a predicate in the machine structure)

constraints constrains the machine parameters
properties constrains the sets and constants

invariant constrains the variables

Notice that constants and variables are not typed at the point of declaration, but their type must be
constrained by the corresponding constraining predicate.

6.3 Machine Parameters

Machine parameters enable the specification of generic machines.

The parameters are either:

sets upper case identifiers; denote finite non-empty sets

numeric natural number constants

6.4 Operations

The form of an operation is

operation-signature = substitution

An operation-signature has the form

e | name(args) |for an operation that only makes a state substitution, or

o | results «—— name(args) |, where results is a list of identifiers that represent result values.

In both cases the operation may have no arguments.

6.5 Invariant and Preconditions

The invariant of a machine is an expression of the properties that the state has to satisfy for the operations
to correctly model the required behaviour.

The invariant expresses what might be called safety or integrity conditions.

The initial state must satisfy the invariant, and it is an obligation that each operation maintains the
invariant: it is guaranteed that the invariant is true before an operation is invoked and it is the duty of the
operation to ensure that the invariant is true after the operation.

The precondition of an operation should capture all combinations of state and operation arguments
before an operation that are required to ensure that the invariant is satisfied after the operation.

It is important that the invariant is as strong as necessary, and the precondition is as weak as possible,
but no weaker than necessary.

6.6 Trivial preconditions

Although the specification of FeedBank and RobBank use a preconditioned substitution the precondi-
tion is used only to carry the type of the parameter to the operation.

This is a trivial precondition.
6.7 Problem with the PiggyBank Machine

There is a problem with the PiggyBank machine.
See if you can spot it.

Alternatively, generate the proof obligations and try to discharge them.

6.8 Proof obligation generation and proof

Having analyzed a machine, you should routinely generate the proof obligations by selecting the pog
(proof obligation generator) button in the Main environment.

Then move to the Provers environment, select the prv (provers) button for the machine, and select
AutoProver. If there are unproved obligations then you should either try to discharge the proof obligation
using the BToolProver, or at least inspect the obligation to see if it is true.

This should be a routine validation step.

6.9 Viewing the proof obligations

Select the Provers environment and select the ppf (prettyprint proof) button for the machine of interest.
Select the proof obligations from the list.
Select the Documents environment, and notice that there is a green construct for the chosen machine.

Mark-up the proof obligations by selecting the dmu (document markup) button; the view by selecting
the shw (show) button.

6.10 Adding a non-trivial precondition

An attempt to discharge the outstanding proof obligation for the operation RobBank will leave amount <
piggybank unprovable.

This occurs because the machine invariant says that piggybank € N, that is 0 < piggybank both before
and after an operation.

Thus we need to add the conjunct amount < piggybank to the precondition of RobBank.

6.11 Towards understanding preconditions

Run the following experiment:

1. run the animator on PiggyBank with RobBank having a trivial precondition;

2. run the animator on PiggyBank with RobBank having the non-trivial precondition.
In each case:

1. enable display invariant —the default is not display;
2. run:

(a) FeedBank(5)
(b) RobBank(10)
(c) FeedBank(5)

Describe the results. Notice very carefully that failure of the precondition does not stop the operation
from going ahead.

6.12 Total and Partial operations: preconditions

Operations without non-trivial preconditions are fotal operations: that is the operation may be invoked
in any state of the machine, and for any value of the arguments of the operation. Such operations are
also called robust.

Operations with non-trivial preconditions are partial operations: that is the operation may not be defined
outside of the precondition. Such operations are also called fragile.

A precondition is an assumption, it is not a condition that is going to be tested by the implementer of the
operation.

It is the obligation of the invoker of the operation to ensure that the precondition holds. The precondition
is the part of the contract that applies to the client of the operation.

7 Modelling a Coffee Club

We will now model a coffee club with the following facilities for members:

Joining a person can join the club. For the purpose of this simple exercise we identify each member by
an element of the set NAME. Of course we want all members to be distinct.

Contributing members can contribute money to the club. This is used to increase the credit of the
member, which in turn is used to pay for cups of coffee.

Buy coffee a member can buy a cup of coffee. The price of a cup of coffee is deducted from the
members credit.

Credit a member can obtain their current credit balance.

The above behaviour is modelled by the machine CoffeeClub, initially named CoffeeClub0.

7.1 A CoffeeClub machine

MACHINE CoffeeClub0O (NAME)
INCLUDES PiggyBank
PROMOTES RobBank , CashLeft
CONSTANTS coffee
PROPERTIES coffee = 120
VARIABLES finances
INVARIANT finances € NAME - N
INITIALISATION finances := {}

OPERATIONS

NewMember (member) =
pre member € NAME
then
finances (member) := 0
end ;
Contribute (member , amount) =
pre member € NAME A amount € N
then
finances (member) := finances (member) + amount ||
FeedBank (amount)
end ;

BuyCoffee (member) =
pre member € NAME
then
finances (member) := finances (member) — coffee

end ;
credit «—— Credit (member) =

10

pre member € NAME
then credit := finances (member)

end
END

Aspects of this machine are:

o The NAME set is represented by a machine parameter.

e The PiggyBank machine is included into this machine. This embeds the state of PiggyBank into
this machine, and gives CoffeeClub access to the operations of PiggyBank.

e The operations RobBank and CashLeft are promoted to the interface of CoffeeClub.
e A constant cof fee is used for the cost of a cup of coffee.

o The state of the machine consists of a variable f inances, which is a partial function from NAME
to N.

e Three operations NewMember, Contribute, BuyCoffee and Credit are used to model the re-
quired behaviour.

7.2 Some notes on machine inclusion

Included machine state: the included machine’s state is “added” to the state of the including machine.

Referencing included state: the variables in the state of the included machine may be referenced by
the including machine.

Modifying the variables of included state: variables of the included machine may be modified by the
included machine, but only by invoking operations of the included machine.

Export of operations: While operations of the included machine may be used by the including ma-
chines, they do not becomes operations of the including machine unless promoted by including
machine.

Included machine parameters: if the included machine has parameters they must be instantiated by
the including machine.

7.3 Problems with CoffeeClub

The specification given by this machine is not adequate. It is easy to show that the operations can break
the invariant.

Generating the proof obligations and attempting to discharge them will illustrate some of the problems.
Run the AutoProver on the proof obligations and examine any undischarged proof obligations.

Animation may help to illustrate where the problems lie.

11

7.4 Identifying and fixing the problems

The problems are enumerated below:

NewMember this operation has an undesirable functional property: if an existing member —or a new
member with the same name as an existing member— with credit runs this operation then their
finances are set to 0! The specification alerts the user to this undesirable effect by adding a pre-
condition member ¢ dom(finances), that is, the prospective member is not an existing member.

Contribute the function finances is partial, so the expression used to update the member’s finances:
finances(member) := finances(member) + amount
will be undefined when member ¢ dom(finances). A precondition that member € dom(finances)
is required.
BuyCoffee In order to buy a coffee, two things are required

1. the person must be a member, otherwise finances(member) will be undefined,;

2. a member must have enough finance to cover the price of a cup of coffee. If this is not the
case then finances(member) — coffee will not be a natural number, breaking the invariant.

So a precondition of:
member € dom(finances) A [lex] finances(member) > coffee

is required.

Credit finances(member) assumes member € dom(finances), so this needs to be added to the pre-
condition.

The following versions of PiggyBank and CoffeeClub have appropriately strengthened preconditions.

MACHINE PiggyBank
VARIABLES piggybank
INVARIANT piggybank € N
INITIALISATION piggybank := 0

OPERATIONS

FeedBank (amount) =
pre amount € N then
piggybank := piggybank + amount
end ;
RobBank (amount) =
pre amount € N A\ amount < piggybank then
piggybank := piggybank — amount

end ;
money «—— CashLeft =
begin
money = piggybank
end
END

12

MACHINE CoffeeClub (NAME)
INCLUDES PiggyBank
PROMOTES RobBank , CashLeft
CONSTANTS coffee
PROPERTIES coffee = 120
VARIABLES finances
INVARIANT finances € NAME +~ N
INITIALISATION finances := {}

OPERATIONS

NewMember (member) =
pre member € NAME N member ¢ dom (finances)
then
finances (member) := 0
end ;
Contribute (member , amount) =
pre member € NAME N
member € dom (finances) \ amount € N
then
finances (member) := finances (member) + amount ||
FeedBank (amount)
end ;

BuyCoffee (member) =
pre member € NAME N member € dom (finances) A
finances (member) > coffee
then
finances (member) := finances (member) — coffee
end ;
credit «—— Credit (member) =
pre member € NAME N member € dom (finances)
then credit := finances (member)

end
END

8 Specifying a Robust machine

Most of the operations of the CoffeeClub machine are fragile, that is the operations have non-trivial
preconditions. This means that there are combinations of state and operations arguments for which the

operation will fail.

Such operations are not safe to use in an application programmer interface (API) or user interface (UI).

We will build an API machine, CoffeeClubAPI, with robust versions of the operations of CoffeeClub.
These operations will use guards that discharge the precondition of the fragile operation ensuring that it

is safe to invoke the fragile operation.

13

Each operation returns a response that reports whether the operation was successful, or why the precon-
dition failed.

MACHINE CoffeeClubAPI (NAME)
INCLUDES CoffeeClub (NAME)
SETS RESPONSE = { OK ,

existing_member ,
not_a_member
not_enough_finance ,

not_enough_in_bank }
OPERATIONS

response «—— NewMemberAPI (member) =
pre member € NAME then
if member € dom (finances)
then response := existing_member
else
response := OK || NewMember (member)
end
end ;
response «— ContributeAPI (member , amount) =
pre member € NAME N amount € N then
if member ¢ dom (finances) then
response := not_a_member
else response := OK || Contribute (member , amount)
end
end ;

response «—— BuyCoffeeAPI (member) =
pre member € NAME then
select member ¢ dom (finances) then
response := not_a_member
when finances (member) < coffee then
response = not_enough_finance
else response := OK || BuyCoffee (member)
end
end ;
response , credit «—— CreditAPI (member) =
pre member € NAME then
if member ¢ dom (finances) then
response := not_a_member || credit :€ N
else response := OK || credit < Credit (member)
end
end ;

14

response «<— RobBankAPI (amount) =
pre amount € N then
if piggybank < amount then
response = not_enough_in_bank
else response := OK || RobBank (amount)
end

end ;
money «— CashLeftAPI = money «— CashLeft
END

9 A Question of Identity

The CoffeeClub, in addition to being a very simple model, also exhibits a serious deficiency:
It uses names for the identity of members.

This is clearly inadequate. For example we have a restriction that two people with the same name cannot
belong to the club.

In all real systems we need to allocate unique identifiers for each member of —for each component of—
a system.

Subsequent system models will demonstrate this.

15

	B Mathematical Toolkit
	Set Theory
	Relations
	Functions

	Predicate Calculus
	Some Terminology

	Notation
	Abstract Machines
	Machine Variables in B
	Object based
	Substitutions
	Abstract Machine Notation

	The B-Toolkit
	The B-Toolkit interface
	Introducing a new machine

	A Simple Model
	Machine Structure
	…Machine Structure
	Machine Parameters
	Operations
	Invariant and Preconditions
	Trivial preconditions
	Problem with the PiggyBank Machine
	Proof obligation generation and proof
	Viewing the proof obligations
	Adding a non-trivial precondition
	Towards understanding preconditions
	Total and Partial operations: preconditions

	Modelling a Coffee Club
	A CoffeeClub machine
	Some notes on machine inclusion
	Problems with CoffeeClub
	Identifying and fixing the problems

	Specifying a Robust machine
	A Question of Identity

