
COMP(2041|9044) 25T2 — Unix Filters

https://www.cse.unsw.edu.au/~cs2041/25T2/

https://www.cse.unsw.edu.au/~cs2041/25T2/ COMP(2041|9044) 25T2 — Unix Filters 1 / 62

What is a filter?

A filter is a program that transforms a byte stream.

On Unix-like systems filters are commands that:

read bytes from their standard input or specified files

perform useful transformations on the stream

write the transformed bytes to their standard output

most filters work on text, UTF-8 or perhaps just ASCII

most filters are line-based, a few are byte based or character-based

https://www.cse.unsw.edu.au/~cs2041/25T2/ COMP(2041|9044) 25T2 — Unix Filters 2 / 62

Using Filters

Shell I/O redirection can be used to specify filter source and destination files:

$ filter < input.txt > output.txt
$ < input.txt filter > output.txt
$ < input.txt > output.txt filter

input.txt filter output.txt

Alternatively, most filters allow input files to be specified as arguments:

$ filter input1.txt input2.txt input3.txt > output.txt

input1.txt
input2.txt
input3.txt

filter output.txt

https://www.cse.unsw.edu.au/~cs2041/25T2/ COMP(2041|9044) 25T2 — Unix Filters 3 / 62

Using Filters

In isolation, filters are reasonably useful

In combination, they provide a very powerful problem-solving toolkit.

Filters are normally used in combination via a pipeline:

filter1 | filter2 | ... | filterN

filter1 filter2 ... filterN

Note: similar style of problem-solving to function composition.

https://www.cse.unsw.edu.au/~cs2041/25T2/ COMP(2041|9044) 25T2 — Unix Filters 4 / 62

Using Filters

Unix filters use common conventions for command line arguments:
input can be specified by a list of file names
if no files are mentioned, the filter reads from standard input

which may have been re-directed from a file
the filename - corresponds to standard input

for example:

read from the file data1
$ filter data1
or
$ filter < data1
read from the files data1 data2 data3
$ filter data1 data2 data3
read from data1, then stdin, then data2
$ filter data1 - data2

If a filter doesn’t cope with named sources, you use cat at the start of the pipeline

https://www.cse.unsw.edu.au/~cs2041/25T2/ COMP(2041|9044) 25T2 — Unix Filters 5 / 62

Filters: Options

Filters normally perform multiple variations on a task.

Selection of the variation is accomplished via command-line options:

options are introduced by a - (”minus” or ”dash”)

options have a ”short” form, - followed by a single letter (e.g. -v)

options have a ”long” form, -- followed by a word (e.g. --verbose)

short form options can usually be combined (e.g. -av vs -a -v)

--help (-h or sometimes -?) often gives a list of all command-line options

https://www.cse.unsw.edu.au/~cs2041/25T2/ COMP(2041|9044) 25T2 — Unix Filters 6 / 62

Filters: Options

Most filters have many options for controlling their behaviour.

Unix manual entries describe how each option works.

To find what filters are available: apropos keyword

The solution to all your problems: RTFM

https://www.cse.unsw.edu.au/~cs2041/25T2/ COMP(2041|9044) 25T2 — Unix Filters 7 / 62

cat - the simplest filter
cat command copies its input to output unchanged (identity filter).
cat - given filenames, concatenates them onto stdout.
cat - given no filenames, copies stdin to stdout unchanged.

$ cat hello.c
#include <stdio.h>

int main(void) {
printf("hello\n");

}
$ cat < hello.c
#include <stdio.h>

int main(void) {
printf("hello\n");

}

https://www.cse.unsw.edu.au/~cs2041/25T2/ COMP(2041|9044) 25T2 — Unix Filters 8 / 62

cat: some options

Some useful cat options:

-n number output lines (starting from 1)
-A display non-printing characters - handy for debugging (not ava ilable on mac)
-s squeeze consecutive blank lines into single blank line

See also: the tac command - which reverses the order of lines.

See also: the rev command - which reverses the order of characters in lines.

https://www.cse.unsw.edu.au/~cs2041/25T2/ COMP(2041|9044) 25T2 — Unix Filters 9 / 62

cat: implemented in C - passing bytes from input to stdout

// write bytes of stream to stdout
void process_stream(FILE *stream) {

int byte;
while ((byte = fgetc(stream)) != EOF) {

if (fputc(byte, stdout) == EOF) {
perror("cat:");
exit(1);

}
}

}
source code for cat.c

https://www.cse.unsw.edu.au/~cs2041/25T2/ COMP(2041|9044) 25T2 — Unix Filters 10 / 62

cat: implemented in C - where does input come from?
// process files given as arguments
// if no arguments process stdin
int main(int argc, char *argv[]) {

if (argc == 1) {
process_stream(stdin);

} else {
for (int i = 1; i < argc; i++) {

FILE *in = fopen(argv[i], "r");
if (in == NULL) {

fprintf(stderr, "%s: %s: ", argv[0], argv[i]);
perror("");
return 1;

}
process_stream(in);
fclose(in);

}
}
return 0;

}
source code for cat.c

https://www.cse.unsw.edu.au/~cs2041/25T2/ COMP(2041|9044) 25T2 — Unix Filters 11 / 62

cat: implemented in Python

def process_stream(stream):
"""
copy bytes of f to stdout
"""
for line in stream:

print(line, end="")
def main():

"""
process files given as arguments, if no arguments process stdin
"""
if not sys.argv[1:]:

process_stream(sys.stdin)
else:

for pathname in sys.argv[1:]:
with open(pathname, "r") as f:

process_stream(f)
source code for cat.py

unlike C, line-based and handles only text (UTF8)
(less natural) byte-based Python left as exercise
https://www.cse.unsw.edu.au/~cs2041/25T2/ COMP(2041|9044) 25T2 — Unix Filters 12 / 62

common task - filter particular lines

very commonly we need a filter which passes only particular lines

often we want line number added to line

useful if filename add (for when input is coming from multiple files)

one common need: select lines containing string(s)

https://www.cse.unsw.edu.au/~cs2041/25T2/ COMP(2041|9044) 25T2 — Unix Filters 13 / 62

selecting lines containing a string - C

// print lines containing the specified substring
void process_stream(FILE *stream, char *name, char *substring) {

char *line = NULL;
size_t line_size = 0;
int line_number = 1;
while (getline(&line, &line_size, stream) > 0) {

if (strstr(line, substring) != NULL) {
printf("%s:%d:%s", name, line_number, line);

}
line_number++;

}
free(line);

}
source code for fgrep.c

https://www.cse.unsw.edu.au/~cs2041/25T2/ COMP(2041|9044) 25T2 — Unix Filters 14 / 62

selecting lines containing a string - C - main function
// if no arguments process stdin
int main(int argc, char *argv[]) {

if (argc == 2) {
process_stream(stdin, "<stdin>", argv[1]);

} else {
for (int i = 2; i < argc; i++) {

FILE *in = fopen(argv[i], "r");
if (in == NULL) {

fprintf(stderr, "%s: %s: ", argv[0], argv[i]);
perror("");
return 1;

}
process_stream(in, argv[i], argv[1]);
fclose(in);

}
}

source code for fgrep.c

https://www.cse.unsw.edu.au/~cs2041/25T2/ COMP(2041|9044) 25T2 — Unix Filters 15 / 62

selecting lines containing a string - Python

def process_stream(f, name, substring):
"""
print lines containing substring
"""
for (line_number, line) in enumerate(f, start=1):

if substring in line:
print(f'{name}:{line_number}:{line}', end='')

def main():
"""
process files given as arguments, if no arguments process stdin
"""
if len(sys.argv) == 2:

process_stream(sys.stdin, "<stdin>", sys.argv[1])
elif len(sys.argv) > 2:

for pathname in sys.argv[2:]:
with open(pathname, 'r') as f:

process_stream(f, pathname, sys.argv[1])
source code for fgrep.py

https://www.cse.unsw.edu.au/~cs2041/25T2/ COMP(2041|9044) 25T2 — Unix Filters 16 / 62

Matching Any of A Set of String

previous programs too limited for many uses

often need to select lines containing any of a set of strings

set may be huge or infinite

regular expressions: concise powerful notation for sets of strings

concept - famous theoretician Stephen Kleene 1950s

syntax & implementation - Turing award winner - Ken Thompson (1968)

originally editors (qed, ed, vi, emacs, …) & compilers

https://www.cse.unsw.edu.au/~cs2041/25T2/ COMP(2041|9044) 25T2 — Unix Filters 17 / 62

Regular Expressions

a regular expression (regex) often thought of as a pattern

but think of it as defining a set of strings.

set may be small, huge or infinite

regular expressions libraries available for most languages.

many tools make use of regular expressions for searching

effective use of regular expressions makes you much more productive

incredibly useful for manipulation of textual data

POSIX standard(s) for regular expressions

https://www.cse.unsw.edu.au/~cs2041/25T2/ COMP(2041|9044) 25T2 — Unix Filters 18 / 62

Regular Expressions Basics

Unless a character has a special meaning it matches itself
e.g. a has no special meaning so it matches a.

𝑝* denotes zero or more repetitions of 𝑝.
e.g. b* matches the empty string and: b, bb, bbb, bbbb …
note this is an infinite set of strings

𝑝𝑎𝑡𝑡𝑒𝑟𝑛1|𝑝𝑎𝑡𝑡𝑒𝑟𝑛2 denotes the union of 𝑝𝑎𝑡𝑡𝑒𝑟𝑛1 and 𝑝𝑎𝑡𝑡𝑒𝑟𝑛2.
e.g perl|python|ruby matches any of: perl, python or ruby

| is sometimes called alternation
Parentheses are used for grouping

e.g. c(,c)* matches: c c,c c,c,c c,c,c,c …
and (d|e)*(f|g) matches f, g, df, dg, ef, eg, ddf, deg, edf, edg, eef, …

backslash \ removes any special meaning of the following character
e.g. * matches an * instead of indicating repetition

Any regular expression can be written using only ()*|\
but many syntax features are present for convenience & clarity.

https://www.cse.unsw.edu.au/~cs2041/25T2/ COMP(2041|9044) 25T2 — Unix Filters 19 / 62

Convenient Regular Expressions for matching Single Characters

. (dot) matches any single character.
Square brackets provide convenient matching of any one of a set of characters.
[listOfCharacters] matches any single character from listOfCharacters.

e.g. [aeiouAEIOU] matches any (English) vowel.
A shorthand is available for ranges of characters [𝑓𝑖𝑟𝑠𝑡 − 𝑙𝑎𝑠𝑡]

e.g [a-e] [a-z] [0-9] [a-zA-Z] [A-Za-z] [a-zA-Z0-9]
Square brackets matching can be inverted with an ^
[^listOfCharacters] matches any single character except those in listOfCharacters.

e.g [^a-e] matches any character except one of the first five lowercase letters
Other characters lose their special meaning inside bracket expressions.
e.g. [^X]*X matches any characters up to and including the first X

https://www.cse.unsw.edu.au/~cs2041/25T2/ COMP(2041|9044) 25T2 — Unix Filters 20 / 62

Anchoring Matches

regular expressions may be used to match against a whole string
e.g re.fullmatch in Python

regular expressions are often used to match a substring (part of a string)
e.g grep prints lines containing a substring matching the regular expression
e.g re.search in Python (re.match matches only at start of string)

when matching part of a string you can limit matches to the start or end of a string (or both)
start of the string is denoted by ^ (uparrow)

^hello matches a string starting with hello
note ^ has two meanings in regular expressions
e.g. ^[abc] matches a or b or c at the start of a string.
e.g. [^abc] matches any character except a or b or c (anywhere in the string)

the end of the string is denoted by $ (dollar)
cat$ matches cat at the end of a string.
^cat.*dog$ matches any string starting cat and finishing dog.

https://www.cse.unsw.edu.au/~cs2041/25T2/ COMP(2041|9044) 25T2 — Unix Filters 21 / 62

Convenient Regular Expressions for Repetition

For convenience and readability, more special characters denoting repetition:

𝑝* denotes zero or more repetitions of 𝑝

𝑝+ denotes one or more repetitions of 𝑝
e.g. [0-9]+ matches any sequence of digits (i.e. matches integers)
e.g. [-'a-zA-Z]+ matches any sequence of letters/hyphens/apostrophes

this pattern could be used to match words in a piece of English text,
e.g. it's, John, …

𝑝? denotes zero or one occurrence of 𝑝

𝑝{𝑛} denotes 𝑛 repetitions of 𝑝
e.g z[0-9]{7} matches a UNSW zid

𝑝{𝑛,𝑚} denotes 𝑛 to 𝑚 repetitions of 𝑝

𝑝{𝑛,} denotes 𝑛 or more repetitions of 𝑝

𝑝{,𝑚} denotes 𝑚 or less repetitions of 𝑝

https://www.cse.unsw.edu.au/~cs2041/25T2/ COMP(2041|9044) 25T2 — Unix Filters 22 / 62

Regular Expression Examples

Regex Possible Matches
abc abc
a.c abc, aac, acc, aXc, a2c, …
ab*c abc, ac, abbc, abbbc, …
a|the a, the
[a-z] a, b, c, … z

websites https://regex101.com and https://regexr.com highly recommend to help let you understand regex matching

https://www.cse.unsw.edu.au/~cs2041/25T2/ COMP(2041|9044) 25T2 — Unix Filters 23 / 62

grep: select lines matching a pattern

grep copies to stdout lines that match a specified regular expression.
some regular expression characters also special meaning to Shell
when run from Shell regular expression often needs single quotes
grep is an acronym for Globally search with Regular Expressions and Print

Some useful grep options:

-E use extended regular expression syntax
-i ignore upper/lower-case difference in matching
-v only display lines that do not match the pattern
-c print a count of matching lines
-w only match pattern if it makes a complete word
-x only match pattern if it makes a complete line

https://www.cse.unsw.edu.au/~cs2041/25T2/ COMP(2041|9044) 25T2 — Unix Filters 24 / 62

grep and friends

grep -F match strings only (no regular expressions)
use if you don’t need regex
faster
avoids bugs from regex syntax accidentally occurring in your match string

grep -G or grep matches a subset of regular expressions, e.g. no + ? | () {}
faster than grep -E but this is rarely important these days
generally just use grep -E

grep -E (extended grep) matches full POSIX regular expressions
grep -E is what you want most of the time

grep -P POSIX regular expressions + Perl extensions
standard Python regex include some but not all Perl extensions
use if you need Perl/Python regex extensions
PCRE library widely used (e.g. Apache)

https://www.cse.unsw.edu.au/~cs2041/25T2/ COMP(2041|9044) 25T2 — Unix Filters 25 / 62

wc: word counter

wc summarizes its input as a single line.

often useful as last command in pipeline

also useful in shell scripts

other filters may have counting options, e.g. grep -c

some useful wc options:

-c print the number of characters
-w print the number of words (non-white space) only
-l print the number of lines only

by default, wc prints the number of line, words, characters in its input, e.g

$ wc /etc/passwd
49 79 2793 /etc/passwd

https://www.cse.unsw.edu.au/~cs2041/25T2/ COMP(2041|9044) 25T2 — Unix Filters 26 / 62

wc in C
int n_lines = 0;
int n_words = 0;
int n_chars = 0;
int in_word = 0;
int c;
while ((c = fgetc(in)) != EOF) {

n_chars++;
if (c == '\n') {

n_lines++;
}
if (isspace(c)) {

in_word = 0;
} else if (!in_word) {

in_word = 1;
n_words++;

}
}
printf("%d %d %d %s\n", n_lines, n_words, n_chars, name);
source code for wc.c

https://www.cse.unsw.edu.au/~cs2041/25T2/ COMP(2041|9044) 25T2 — Unix Filters 27 / 62

wc in Python
def process_stream(stream):

"""
count lines, words, chars in stream
"""
lines = 0
words = 0
characters = 0
for line in stream:

lines += line.endswith(os.linesep)
words += len(line.split())
characters += len(line)

print(f"{lines:>6} {words:>6} {characters:>6}", end="")
source code for wc.py

https://www.cse.unsw.edu.au/~cs2041/25T2/ COMP(2041|9044) 25T2 — Unix Filters 28 / 62

tr: transliterate characters

tr reads chars and writes characters, mapping (replacing) some chars with others.

the mapping is specified as 2 arguments: tr sourceChars destChars**

each char in sourceChars is mapped to the corresponding char in destChars. For example:

tr 'abc' '123' < someText

𝑠𝑜𝑢𝑟𝑐𝑒𝐶ℎ𝑎𝑟𝑠 = 'abc', 𝑑𝑒𝑠𝑡𝐶ℎ𝑎𝑟𝑠 = '123': a → 1 b → 2 c → 3

tr doesn’t accept file names on the command line - it uses stdin only

tr is not line-based it works with individual chars

most tr implementations do not support multi-char characters (UTF8)
they really work with bytes not characters!

https://www.cse.unsw.edu.au/~cs2041/25T2/ COMP(2041|9044) 25T2 — Unix Filters 29 / 62

tr: transliterate characters

Chars that are not in 𝑠𝑜𝑢𝑟𝑐𝑒𝐶ℎ𝑎𝑟𝑠 are copied unchanged to output.

If there is no corresponding char (i.e. 𝑑𝑒𝑠𝑡𝐶ℎ𝑎𝑟𝑠 is shorter than 𝑠𝑜𝑢𝑟𝑐𝑒𝐶ℎ𝑎𝑟𝑠), then the last char in 𝑑𝑒𝑠𝑡𝐶ℎ𝑎𝑟𝑠
is used.

Shorthands are available for specifying char lists:

E.g. 'a-z' is equivalent to 'abcdefghijklmnopqrstuvwxyz'

Note: newlines can be modified if the mapping specification requires it.

https://www.cse.unsw.edu.au/~cs2041/25T2/ COMP(2041|9044) 25T2 — Unix Filters 30 / 62

tr: transliterate characters

Some useful tr options:

-c map all bytes not occurring in 𝑠𝑜𝑢𝑟𝑐𝑒𝐶ℎ𝑎𝑟𝑠 (complement)
-s squeeze adjacent repeated characters out (only copy the first)
-d delete all characters in 𝑠𝑜𝑢𝑟𝑐𝑒𝐶ℎ𝑎𝑟𝑠 (no 𝑑𝑒𝑠𝑡𝐶ℎ𝑎𝑟𝑠)

map all upper-case letters to lower-case equivalents
tr 'A-Z' 'a-z' < text
naive encryption (a->b, b->c, ... z->a)
tr 'a-zA-Z' 'b-zaB-ZA' < text
remove all digits from input
tr -d '0-9' < text
break text file into individual words, one per line
tr -cs 'a-zA-Z0-9' '\n' < text

https://www.cse.unsw.edu.au/~cs2041/25T2/ COMP(2041|9044) 25T2 — Unix Filters 31 / 62

head/tail: select first/last lines

head prints the first 𝑛 (default 10) lines of input.

The tail prints the last 𝑛 lines of input.

-n option changes number of lines head/tail prints.

e.g. tail -n 30 file prints last 30 lines of file.

Combine head and tail to select a range of lines.

head -n 100 | tail -n 20 copies lines 81..100 to output.

head & tail mostly used with stdin or single file

if multiple files specified output prefixed with name

https://www.cse.unsw.edu.au/~cs2041/25T2/ COMP(2041|9044) 25T2 — Unix Filters 32 / 62

Delimited Input

Many filters are able to work with text data formatted as fields (columns in spreadsheet terms).

Such filters typically have an option for specifying the delimiter or field separator.
(Unfortunately, they often make different assumptions about the default column separator)

Example (tab-separated columns):

John 50
Wen 75
Andrew 33
Wenjie 95
Yang 93
Sowmya 96

https://www.cse.unsw.edu.au/~cs2041/25T2/ COMP(2041|9044) 25T2 — Unix Filters 33 / 62

Delimited Input

Or vertical bar-separated columns, CSE enrollment file:

COMP1511|2252424|Abbot, Andrew John |3727|1|M
COMP2511|2211222|Abdurjh, Saeed |3640|2|M
COMP1511|2250631|Accent, Aac-Ek-Murhg |3640|1|M
COMP1521|2250127|Addison, Blair |3971|1|F
COMP4141|2190705|Allen, David Peter |3645|4|M
COMP4960|2190705|Allen, David Pater |3645|4|M

Or colon-separated columns, e.g: Unix password file

root:*:0:0:root:/root:/bin/bash
jas:*/44Ko:100:100:John Shepherd:/home/jas:/bin/bash
cs1521:*:101:101:COMP1521:/home/cs1521:/bin/bash
cs2041:*:102:102:COMP2041:/home/cs2041:/bin/bash
cs3311:*:103:103:COMP3311:/home/cs3311:/bin/bash

https://www.cse.unsw.edu.au/~cs2041/25T2/ COMP(2041|9044) 25T2 — Unix Filters 34 / 62

cut: vertical slice

The cut command prints selected parts of input lines.

cut can select fields, column separator defaults to tab

cut can select a range of character positions

some useful cut options:

-f𝑙𝑖𝑠𝑡𝑂𝑓𝐶𝑜𝑙𝑠 print only the specified fields (tab-separated) on output
-c𝑙𝑖𝑠𝑡𝑂𝑓𝑃𝑜𝑠 print only chars in the specified positions
-d𝑐 use character 𝑐 as the field separator

lists are specified as ranges (e.g. 1-5) or comma-separated (e.g. 2,4,5).

cut has no way to refer to “last column” without counting the columns.
awk has this and usually sed or perl will solve problem too

cut has no way to reorder columns.
awk has this and usually sed or perl will solve problem too

https://www.cse.unsw.edu.au/~cs2041/25T2/ COMP(2041|9044) 25T2 — Unix Filters 35 / 62

cut: vertical slice - Examples

print the first column
cut -f1 data
print the first three columns
cut -f1-3 data
print the first and fourth columns
cut -f1,4 data
print all columns after the third
cut -f4- data
print the first three columns, if '|'-separated
cut -d'|' -f-3 data
print the first five chars on each line
cut -c1-5 data

https://www.cse.unsw.edu.au/~cs2041/25T2/ COMP(2041|9044) 25T2 — Unix Filters 36 / 62

sort: sort lines

The sort command copies input to output but ensures that the output is arranged in some particular order of lines.

By default, sorting is based on the first characters in the line.

Other features of sort:

understands that text data sometimes occurs in delimited fields.
(so, can also sort fields (columns) other than the first (which is the default))

can distinguish numbers and sort appropriately

can ignore punctuation or case differences

can sort files ”in place” as well as behaving like a filter

capable of sorting very large files

https://www.cse.unsw.edu.au/~cs2041/25T2/ COMP(2041|9044) 25T2 — Unix Filters 37 / 62

sort: sort lines

Some useful sort options:

-r sort in descending order (reverse sort)
-n sort numerically rather than lexicographically
-d dictionary order: ignore non-letters and non-digits
-t𝑐 use character 𝑐 to separate columns (default: non-blank to blank transition)
-k𝑛 sort on column 𝑛

Note: often need to put quotes (' ') around the separator character c to prevent the shell from mis-interpreting it.

Hint: to specify Tab as the field delimiter with an interactive shell like bash, type CTRL-v before pressing the Tab key.

https://www.cse.unsw.edu.au/~cs2041/25T2/ COMP(2041|9044) 25T2 — Unix Filters 38 / 62

sort: sort lines - examples

sort numbers in 3rd column in descending order
sort -nr -k3 data
sort the password file based on user name
sort -t: -k5 /etc/passwd

https://www.cse.unsw.edu.au/~cs2041/25T2/ COMP(2041|9044) 25T2 — Unix Filters 39 / 62

sort in Python
import sys
def process_stream(f):

"""
print lines of stream in sorted order
"""
print("".join(sorted(f)), end="")

def main():
"""
process files given as arguments, if no arguments process stdin
"""
if len(sys.argv) == 1:

process_stream(sys.stdin)
else:

with open(sys.argv[1], 'r') as f:
process_stream(f)

source code for sort.py

https://www.cse.unsw.edu.au/~cs2041/25T2/ COMP(2041|9044) 25T2 — Unix Filters 40 / 62

uniq: remove or count duplicates

uniq remove all but one copy of adjacent identical lines.

Some useful uniq options:

-c also print number of times each line is duplicated
-d only print (one copy of) duplicated lines
-u only print lines that occur uniquely (once only)

extremely useful data analysis/summary tool

often preceded by cut

almost always preceded by sort (to ensure identical lines are adjacent)

for example:

extract first field, sort, and tally
cut -f1 data | sort | uniq -c

https://www.cse.unsw.edu.au/~cs2041/25T2/ COMP(2041|9044) 25T2 — Unix Filters 41 / 62

uniq in C
// cope stream to stdout except for repeated lines
void process_stream(FILE *stream) {

char *line = NULL;
size_t line_size = 0;
char *last_line = NULL;
size_t last_line_size = 0;
while (getline(&line, &line_size, stream) > 0) {

if (last_line == NULL || strcmp(line, last_line) != 0) {
fputs(line, stdout);

}
// grow last_line if line has grown
if (last_line_size != line_size) {

last_line = realloc(last_line, line_size);
assert(last_line != NULL);
last_line_size = line_size;

}
strncpy(last_line, line, line_size);

}
free(line);
free(last_line);

}
source code for uniq.c

https://www.cse.unsw.edu.au/~cs2041/25T2/ COMP(2041|9044) 25T2 — Unix Filters 42 / 62

uniq in Python
import sys
def process_stream(stream):

"""
copy stream to stdout except for repeated lines
"""
last_line = None
for line in stream:

if last_line is None or line != last_line:
print(line, end='')

last_line = line
def main():

"""
process files given as arguments, if no arguments process stdin
"""
if not sys.argv[1:]:

process_stream(sys.stdin)
else:

for pathname in sys.argv[1:]:
with open(pathname, 'r') as f:

process_stream(f)
source code for uniq.py

https://www.cse.unsw.edu.au/~cs2041/25T2/ COMP(2041|9044) 25T2 — Unix Filters 43 / 62

sed: stream editor

interactive editors are used to change files, e.g.: vim, emac, sublime, atom, notepad)

sed is an editor for streams (pipelines)

sed can also be used to change files

sed is not interactive - editing commands specified on command-line or in a file

How sed works:

read each line of input

check if it matches any patterns or line-ranges

apply related editing commands to the line

write the transformed line to output

https://www.cse.unsw.edu.au/~cs2041/25T2/ COMP(2041|9044) 25T2 — Unix Filters 44 / 62

sed: stream editor

The editing commands are very powerful and subsume the actions of many of the filters looked at so far.

In addition, sed can:

partition lines based on patterns rather than columns
extract ranges of lines based on patterns or line numbers

Two important sed options

-n do not print lines by default - applies all editing commands as normal
but displays no output, unless p appended to edit command

-E extended regular expressions
like grep you often want this

https://www.cse.unsw.edu.au/~cs2041/25T2/ COMP(2041|9044) 25T2 — Unix Filters 45 / 62

sed: stream editor

Editing commands:

p print the current line
d delete (don’t print) the current line
s/regex/replace/ substitute first occurrence of string matching regex by replace string
s/regex/replace/g substitute all occurrences of string matching regex by replace string
q terminate execution of sed

https://www.cse.unsw.edu.au/~cs2041/25T2/ COMP(2041|9044) 25T2 — Unix Filters 46 / 62

sed: stream editor

All editing commands can be qualified by line addresses or line selector patterns to limit lines where command is
applied:

line_number selects the specified line
start_line_number,end_line_number selects all lines between specified line numbers
/regex/ selects all lines that match regex
/regex1/,/regex2/ selects all lines between lines matching regex1 and regex2

https://www.cse.unsw.edu.au/~cs2041/25T2/ COMP(2041|9044) 25T2 — Unix Filters 47 / 62

sed: stream editor - examples

print all lines
sed -n 'p' < file

print the first 10 lines
sed '10q' < file
sed -n '1,10p' < file

#print lines 81 to 100
sed -n '81,100p' < file

#print the last 10 lines of the file?
sed -n '$-10,$p' < file # does NOT work

https://www.cse.unsw.edu.au/~cs2041/25T2/ COMP(2041|9044) 25T2 — Unix Filters 48 / 62

sed: stream editor - more examples

print only lines containing 'xyz'
sed -n '/xyz/p' < file

print only lines NOT containing 'xyz'
sed '/xyz/d' < file

show the passwd file, displaying only the
lines from "root" up to "nobody" (i.e. system accounts)
sed -n '/^root/,/^nobody/p' /etc/passwd

remove first column from ':'-separated file
sed 's/[^:]*://' datafile

reverse the order of the first two columns
sed -E 's/([^:]*):([^:]*):(.*)$/\2:\1:\3/'

https://www.cse.unsw.edu.au/~cs2041/25T2/ COMP(2041|9044) 25T2 — Unix Filters 49 / 62

change a file with sed

Read & writing a file simultaneously is dangerous.

This command will leave story.txt zero-length.

sed 's/[aeiou]//g' story.txt > story.txt # DANGER story.txt will be destroyed

The shell truncates story.txt to zero length before running sed.

sed finds nothing in the file to read.

A simple work-around is a temporary file (there are issues which we will discuss later)

sed 's/[aeiou]//g' story.txt > story.txt.new
mv story.txt.new story.txt

Some sed implementations have a command-line option -i which does this:

sed -i 's/[aeiou]//g' story.txt

https://www.cse.unsw.edu.au/~cs2041/25T2/ COMP(2041|9044) 25T2 — Unix Filters 50 / 62

find: search for files

The find commands allows you to search for files based on specified properties

entire directory trees, testing each file for the required property.

takes actions for all matching files - default action is print the filename

very useful as first stage of pipeline, but can specify operation as well

Invocation: find directories tests actions

where

the tests examine file properties like name, type, modification date

the actions can be simply to print the name or execute an arbitrary command on the matched file

https://www.cse.unsw.edu.au/~cs2041/25T2/ COMP(2041|9044) 25T2 — Unix Filters 51 / 62

find: search for files - examples

find all the HTML files below /home/z5234567/public_html
find /home/z5234567/public_html -name '*.html'

find all your files/dirs changed in the last 2 days
find ~ -mtime -2

show info on files changed in the last 2 days
find ~ -mtime -2 -type f -exec ls -l {} \;

show info on directories changed in the last week
find ~ -mtime -7 -type d -exec ls -ld {} \;

#find directories either new or '07' in their name
find ~ -type d \(-name '*07*' -o -mtime -1 \)

Note: ~ above is shell syntax for your home directory

https://www.cse.unsw.edu.au/~cs2041/25T2/ COMP(2041|9044) 25T2 — Unix Filters 52 / 62

find: search for files - more examples

find all new HTML files below ~/public_html
find ~/public_html -name '*.html' -mtime -1

find background colours in my HTML files
find ~/public_html -name '*.html' -exec grep -H 'bgcolor' {} \;

above could also be accomplished via ...
grep -r 'bgcolor' ~/public_html

make sure that all HTML files are accessible
find ~/public_html -name '*.html' -exec chmod 644 {} \;

#remove any really old files ... Danger!
find /home/andrewt -type f -mtime +364 -exec rm {} \;
find /home/andrewt -type f -mtime +364 -ok rm {} \;

https://www.cse.unsw.edu.au/~cs2041/25T2/ COMP(2041|9044) 25T2 — Unix Filters 53 / 62

join: database operator (advanced)

join merges two files using the values in a field in each file as a common key.

The key field can be in a different position in each file, but the files must be ordered on that field. The default key
field is 1.

Some useful join options:

-1 k key field in first file is k
-2 k key field in second file is k
-a N print a line for each unpairable line in file N (1 or 2)
-i ignore case
-t c tab character is c

https://www.cse.unsw.edu.au/~cs2041/25T2/ COMP(2041|9044) 25T2 — Unix Filters 54 / 62

join: database operator

$ cat data1
Bugs Bunny 1953
Daffy Duck 1948
Donald Duck 1939
Goofy 1952
Mickey Mouse 1937
Nemo 2003
Road Runner 1949

$ cat data2
Warners Bugs Bunny
Warners Daffy Duck
Disney Goofy
Disney Mickey Mouse
Pixar Nemo

$ join -t' ' -2 2 -a 1 data1 data2
Bugs Bunny 1953 Warners
Daffy Duck 1948 Warners
Donald Duck 1939
Goofy 1952 Disney
Mickey Mouse 1937 Disney
Nemo 2003 Pixar
Road Runner 1949

https://www.cse.unsw.edu.au/~cs2041/25T2/ COMP(2041|9044) 25T2 — Unix Filters 55 / 62

paste: combine files

The paste command displays several text files ”in parallel” on output.

If the inputs are files a, b, c

the first line of output is composed of the first lines of a, b, c

the second line of output is composed of the second lines of a, b, c

Lines from each file are separated by a tab character or specified delimiter(s).

If files are different lengths, output has all lines from longest file, with empty strings for missing lines.

Interleaves lines instead with -s (serial) option.

https://www.cse.unsw.edu.au/~cs2041/25T2/ COMP(2041|9044) 25T2 — Unix Filters 56 / 62

paste: combine files

Example: using paste to rebuild a file broken up by cut.

assume "data" is a file with 3 tab-separated columns
cut -f1 data > data1
cut -f2 data > data2
cut -f3 data > data3
paste data1 data2 data3 > newdata

#"newdata" should look the same as "data"

https://www.cse.unsw.edu.au/~cs2041/25T2/ COMP(2041|9044) 25T2 — Unix Filters 57 / 62

tee: send copy of pipeline to file

Simple program but useful interactively and sometimes in scripts

$ echo Hello Andrew | tee copy.txt
Hello Andrew
$ cat copy.txt
Hello Andrew
$

a useful debugging trick is tee /dev/tty to divert a copy of a pipeline to the terminal

https://www.cse.unsw.edu.au/~cs2041/25T2/ COMP(2041|9044) 25T2 — Unix Filters 58 / 62

xargs: run commands with arguments from standard input - advanced

Some useful xargs options:

-nmax-args use at most max-args arguments per command line
-Pmax-procs Run up to max-procs processes at a time
-ireplace-str Replace occurrences of replace-str with words read from stdin

For example:

remove home directories of users named Andrew:
grep Andrew /etc/passwd | cut -d: -f6 | xargs rm -r

run make in every sub-directory below /usr/src/
with a Makefile, run up to 8 make's in parallel
find /usr/src -name Makefile | sed 's/Makefile//' | xargs -P8 -i@ make -C @

see also parallel

https://www.cse.unsw.edu.au/~cs2041/25T2/ COMP(2041|9044) 25T2 — Unix Filters 59 / 62

xargs in Python
import subprocess
import sys
the real xargs runs the command multiple times if input is large
the real xargs treats quotes specially
def main():

input_words = [w for line in sys.stdin for w in line.split()]
command = sys.argv[1:]
subprocess.run(command + input_words)

source code for xargs.py

https://www.cse.unsw.edu.au/~cs2041/25T2/ COMP(2041|9044) 25T2 — Unix Filters 60 / 62

process substitution (AKA named pipes) - advanced

bash provides process substitution - interesting & useful, but bash-only
does not work with other shells
uses temporary named pipes

syntax is <(command)
eg. diff <(sort file1) <(sort file2)

runs sort file1 and sort file2 then passes fake filenames to diff as arguments
or >(command)

eg tar cf - somedir | tee >(shasum > dir.tgz.shasum) >(md5sum > dir.tgz.md5sum)
> dir.tar

runs shasum, md5sum, and creates dir.tar all with the output of tar
most of the time pipes | are enough

useful for commands which don’t provide any way of reading from stdin or writing to stdout
but check if - as filename works
and also /dev/stdin /dev/stdout may be available

useful to combine two pipelines

https://www.cse.unsw.edu.au/~cs2041/25T2/ COMP(2041|9044) 25T2 — Unix Filters 61 / 62

Filter summary by type

Horizontal slicing - select subset of lines: cat, head, tail, grep, sed, uniq

Vertical slicing - select subset of columns: cut , sed

Substitution: tr, sed

Aggregation, simple statistics: wc, uniq

Assembly - combining data sources: paste, join

Reordering: sort

Viewing (always end of pipeline): more, less

File system search: find

Programmable filters: sed (also awk, python, perl, …)

https://www.cse.unsw.edu.au/~cs2041/25T2/ COMP(2041|9044) 25T2 — Unix Filters 62 / 62

