
COMP(2041|9044) 25T1 — Shell

https://www.cse.unsw.edu.au/~cs2041/25T1/

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 1 / 76

Shells

Shells are command interpreters
they allow interactive users to execute the commands.
typically a command causes another program to be run
shells may have a graphical (point-and-click) interface

much easier for naive users
much less powerful & not covered in this course

command-line shells are programmable, powerful tools for expert users

bash is the most popular used shell for unix-like systems
other significant unix-like shells include : dash, ash , zsh, fish

we will cover the core features provided by most shells
essentially the POSIX standard shell features

we use dash for scripts in this course
dash implements essentially the POSIX standard shell features
bash & zsh implement superset of POSIX shell features
ash, part of busybox, implements more-or-less the POSIX standard shell features
so scripts written for dash usually compatible with with bash & zsh, ash

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 2 / 76

What Shells Do

Unix shells have the same basic mode of operation:

loop
if (interactive) print a prompt
read a line of user input
apply transformations to line
split line into words using whitespace
use first word in line as command name
execute command, passing other words as arguments

end loop

shells can also be run with commands in a file

shells are programming languages

shells have design decisions to suit interactive use
e.g. variables don’t have to be initialized or declared
these decisions not ideal for programming in Shell
in other words there have to be design compromises

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 3 / 76

Processing a Shell Input Line

a series of transformations are applied to Shell input lines

1 tilde expansion, e.g. ~z1234567→ /home/z1234567

2 parameter and variable expansion, e.g. $HOME→ /home/z1234567

3 arithmetic expansion, e.g. $((6 * 7))→ 42

4 command substitution, e.g. $(whoami)→ z1234567

5 word splitting - line is broken up on white-space

6 filename expansion (globbing), e.g. *.c→ main.c i.c

7 I/O redirection e.g. <i.txt→ stdin replaced with stream from i.txt

8 first word used as program name, other words passed as arguments

order of these transformation is important!

not understanding order is a common source of bugs & security holes
shell is better-avoided if security is significant concern

directories in PATH searched for program name

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 4 / 76

echo: print arguments to stdout
echo prints its arguments to stdout

mainly used in scripts, but also useful when exploring shell behaviour

echo is often built in to shells for efficiency, but also provided by /bin/echo

see also /usr/bin/printf

Two useful echo options:

-n do not output a trailing newline
-e enable interpretation of backslash escapes (on by default in dash)

$ echo Hello Andrew
Hello Andrew
$ echo '\n'
\n
$ echo -e '\n'

$ echo -n Hello Andrew
Hello Andrew$

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 5 / 76

echo: implemented in Python

import sys
def main():

"""
print arguments to stdout
"""
print(' '.join(sys.argv[1:]))

source code for echo.py

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 6 / 76

echo: implemented in C

// print arguments to stdout
int main(int argc, char *argv[]) {

for (int i = 1; i < argc; i++) {
if (i > 1) {

fputc(' ', stdout);
}
fputs(argv[i], stdout);

}
fputc('\n', stdout);
return 0;

}
source code for echo.c

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 7 / 76

Shell Variables

shell variables are untyped - consider them as strings

note that 1 is equivalent to “1”

shell variables are not declared

shell variables do not need initialization

initial value is the empty string

one scope - no local variables
except sub-shells & functions (sort-of)
changes to variables in sub-shells have no effect outside sub-shell
components of pipeline executed in sub-shell

$name replaced with value of variable name

name=value assigns value to variable name
note: no spaces around =

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 8 / 76

$(command) - command expansion:

$(command) is evaluated by running command

stdout is captured from command

except trailing newlines are not captured

$(command) is replaced with the entire captured stdout

surround with "" to white-space possible being lost (due to word-splitting)

‘command‘ (backticks) is equivalent to $(command)
backticks is original syntax, so widely used
nesting of backticks is problematic

For example:

$ now="$(date)"
$ echo $now
Sun 23 Jun 1912 02:31:00 GMT
$

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 9 / 76

'' - Single Quotes

single quotes '' group the characters within into a single word
no characters interpreted specially inside single quotes
variables, commands and arithmetic are not expanded inside single quotes
globbing and word-splitting does not occur inside double quotes
a single quote can not occur within single quotes
you can put a double quote between single-quotes

For example:

$ echo '*** !@#$%^&*(){}[]:;"<>?,./` ***'
*** !@#$%^&*(){}[]:;"<>?,./` ***
$ echo 'this is "normal"'
this is "normal"

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 10 / 76

"" - Double Quotes

double quotes "" group the characters within into a single word
variables, commands and arithmetic are expanded inside double quotes
backslash can be used to escape $ “ “” ’’ \
other characters not interpreted specially inside double quotes
globbing and word-splitting does not occur inside double quotes
you can put a single quote between double-quotes

For example:

$ answer=42
$ echo "The answer is $answer."
The answer is 42.
$ echo 'The answer is $answer.'
The answer is $answer.
$ echo "time's up"
time's up
$ echo "* *"
* *

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 11 / 76

<< - here documents

<<word called a here document
following lines until word specify multi-line string as command input
variables and commands expanded - same as double quotes
<<‘word’ variables and commands not expanded - same as single quotes
<<-word removes leading tabs from each line, allowing indentation within scripts

$ name=Andrew
$ tr a-z A-Z <<END-MARKER
Hello $name
How are you
Good bye
END-MARKER
HELLO ANDREW
HOW ARE YOU
GOOD BYE

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 12 / 76

Arithmetic

$((expression)) is evaluated as an arithmetic expression
expression is evaluated as C-like integer arithmetic
and is replaced with the result
the $ on variables can be omitted in expressions

shell arithmetic implementation slow compared to e.g. C
significant overhead converting to/from strings

older scripts may use the separate program expr for arithmetic

For example:

$ x=8
$ answer=$((x*x - 3*x + 2))
$ echo $answer
42

Note that variables in arithmetic expressions are recursively evaluated

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 13 / 76

word splitting

coders not understanding how shells split words is a frequent source of bugs

inspect how shell splits lines into program arguments (argv)
import sys
print(f'sys.argv = {sys.argv}')
source code for print_argv.py

$ v=''
$./print_argv.py $v
sys.argv = ['./print_argv.py']
$./print_argv.py "$v"
sys.argv = ['./print_argv.py', '']
$ w=' xx yyy zzzz '
$./print_argv.py $w
sys.argv = ['./print_argv.py', 'xx', 'yyy', 'zzzz']
$./print_argv.py "$w"
sys.argv = ['./print_argv.py', ' xx yyy zzzz ']

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 14 / 76

*?[]! - pathname globbing
*?[]! characters cause a word to be matched against pathnames

confusingly similar to regexes - but much less powerful
* matches 0 or more of any character - equivalent to regex .*
? matches any one characters - equivalent to regex .
[characters] matches 1 of characters - same as regex []
[!characters] matches 1 character not in characters - same as regex [^]
if no pathname matches the word is unchanged
aside: globbing also available in Python, Perl, C & other languages

$ echo *.[ch]
functions.c functions.h i.h main.c
$./print_argv.py *.[ch]
['./print_argv.py', 'functions.c', 'functions.h', 'i.h', 'main.c']
$./print_argv.py '*.[ch]'
['./print_argv.py', '*.[ch]']
$./print_argv.py "*.[ch]"
['./print_argv.py', '*.[ch]']
$./print_argv.py *.zzzzz
['./print_argv.py', '*.zzzzz']

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 15 / 76

I/O Redirection

stdin, stdout & stderr for a command can be directed to/from files

< infile connect stdin to the file infile
> outfile send stdout to the file outfile
>> outfile append stdout to the file outfile
2> outfile send stderr to the file outfile
2>> outfile append stderr to the file outfile
> outfile 2>&1 send stderr+stdout to outfile
1>&2 send stdout to stderr (handy for error messages)
«word here-document - previously discussed
«< string (in bash) here-string - a single line here-document
&> outfile (in bash) send stdout+stderr to outfile

beware: > truncates file before executing command.
always have backups!

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 16 / 76

Pipelines

command1 | command2 | command3 | …

stdout of commandn-1 connected to stdin of commandn

beware changes to variables in pipeline are lost

some non-filter style Unix programs given a filename - read from stdin
allows them to be used in a pipeline

(argc,argv,env)

(argc,argv,env)

(argc,argv,env)

stdin
stdout stdin

stdout stdin

stdout

shell

process1

process2

process3

|

|

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 17 / 76

searching PATH for the program

first word on line specifies command to be run
if first word is not the full (absolute) pathname of a file the colon-separated list of directory specified by the
variable PATH is searched
for example if PATH=/bin/:/usr/bin/:/home/z1234567/bin
and the command is kitten the shell will check (stat) these files in order:

/bin/kitten /usr/bin/kitten /home/z1234567/bin
the first that exists and is executable will be run
if none exist the shell will print an error message

or . in PATH causes the current directory to be checked
this can be convenient - but make it last not first, e.g.:
PATH=/bin/:/usr/bin/:/home/z1234567/bin:.
definitely do not include the current directory in PATH if you are root
an empty entry in PATH is equivalent to .

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 18 / 76

danger of having . in your PATH

if . is not last in PATH then programs in the current directory may be unexpectedly run
this can also happen inside run shell scripts or other programs you run
robust shell scripts often set PATH to ensure this doesn’t happen, e.g.: PATH=/bin/:/usr/bin/:$PATH

equivalent to PATH=.:/bin:/usr/bin:/home/z1234567/bin
$ PATH=:/bin:/usr/bin:/home/z1234567/bin
$ cat >cat <<eof
#!/bin/dash
echo miaou
eof
$ chmod 755 cat
$ cat /home/cs2041/public_html/index.html
miaou
$

Problem: ./cat is being run rather /bin/cat

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 19 / 76

Shell Scripts
We can execute shell commands in a file:

$ cat hello
echo Hello, John Connor - the time is $(date)
$ dash hello
Hello, John Connor - the time is Fri 29 Aug 1997 02:14:00 EST

Unix-like systems allow an interpreter to be specified in a #! line
allows program to be executed directly without knowing it is shell

$ cat hello
#!/usr/bin/env dash
echo Hello, John Connor - the time is $(date)
$ chmod 755 hello
$./hello
Hello, John Connor - the time is Fri 29 Aug 1997 02:14:00 EST

use #!/bin/bash if you want bash

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 20 / 76

Shell Built-in Variables

Some shell built-in variables with pre-assigned values:

$0 the name of the command
$1 the first command-line argument
$2 the second command-line argument
… …
$# count of command-line arguments
"$@" command-line arguments as separate word
$? exit status of the most recent command
$$ process ID of this shell

$$ is useful for generating (somewhat) unique names in scripts.
see also the shift command

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 21 / 76

Example - Shell Script using Built-in Variables

#!/bin/dash
A simple shell script demonstrating access to arguments.
written by andrewt@unsw.edu.au as a COMP(2041|9044) example
echo My name is "$0"
echo My process number is $$
echo I have $# arguments
echo My command-line arguments are "$@"
echo My 5th argument is "'$5'"
echo My 10th argument is "'${10}'"
source code for args.sh

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 22 / 76

Example - Simple Shell Script

#!/bin/sh
l [file|directories...] - list files
#
written by andrewt@unsw.edu.au as a COMP(2041|9044) example
#
Short shell scripts can be used for convenience.
#
It is common to put these scripts in a directory
such as /home/z1234567/scripts
then add this directory to PATH e.g in .bash_login
PATH=$PATH:/home/z1234567/scripts
#
Note: "$@" expands to the arguments to the script,
but preserves whitespace in arguments.
ls -las "$@"
source code for l

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 23 / 76

Example - Putting a Pipeline in a Shell Script
#!/bin/dash
Count the number of time each different word occurs
in the files given as arguments, or stdin if no arguments,
e.g. word_frequency.sh dracula.txt
written by andrewt@unsw.edu.au as a COMP(2041|9044) example
cat "$@" | # tr doesn't take filenames as arguments
tr 'A-Z' 'a-z'| # map uppercase to lower case, better - tr '[:upper:]' '[:lower:]'
tr ' ' '\n' | # convert to one word per line
tr -cd "a-z'" | # remove all characters except a-z and '
grep -E -v '^$' | # remove empty lines
sort | # place words in alphabetical order
uniq -c | # count how many times each word occurs
sort -rn # order in reverse frequency of occurrence
notes:
- first 2 tr commands could be combined
- sed 's/ /\n/g' could be used instead of tr ' ' '\n'
- sed "s/[^a-z']//g" could be used instead of tr -cd "a-z'"
source code for word_frequency.sh

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 24 / 76

Debugging Shell Scripts

Tip: debugging for shell scripts

test parts of shell script from command line

use echo to print the value of variables

add set -x to see commands being executed
or equivalently run /bin/dash -x script.sh
shell transforms commands
useful to see exactly what is being executed

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 25 / 76

Exit Status and Control

when Unix-like programs finish they give the operating system an exit status
the return value of ‘main becomes the exit status of a C program
or if exit is called, its argument is the exit status
in Python exit status is supplied as an argument to sys.exit

an exit status is a (usually small) integer
by convention a zero exit status indicated normal/successful execution
a non-zero exit status indicates an error occurred
which non-zero integer might indicate the nature of the problem

program exit status is often ignored
not important writing single programs (COMP1511/COMP9021)
very important when combining multiple programs COMP(2041|9044)

flow of execution in Shell scripts based on exit status
if/while statement conditions use exit status

two weird utilities
/bin/true does nothing and always exits with status 0
/bin/false does nothing and always exits with status 1

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 26 / 76

The test command

The test command performs a test or combination of tests and:
does/prints nothing
returns a zero exit status if the test succeeds
returns a non-zero exit status if the test fails

Provides a variety of useful operators:
string comparison: = !=
numeric comparison: -eq -ne -lt
test if file exists/is executable/is readable: -f -x -r
boolean operators (and/or/not): -a -o !

also available as ‘[’ instead of test - which many programmers prefer

builtin to some shell (e.g. bash) but available as /bin/test or /bin/[

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 27 / 76

The test command examples
does the variable msg have the value "Hello"?
test "$msg" = "Hello"

does x contain a numeric value larger than y?
test "$x" -gt "$y"

Error: expands to "test hello there = Hello"?
msg="hello there"
test $msg = Hello

is the value of x in range 10..20?
test "$x" -ge 10 -a "$x" -le 20

is the file xyz a readable directory?
test -r xyz -a -d xyz

alternative syntax; requires closing]
[-r xyz -a -d xyz]

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 28 / 76

If Statements - syntax

if command1
then

then-commands
elif command2
then

elif-commands
else

else-commands
fi

the execution path depends on the exit status of command1 and command2
command1 is executed and if its exit status is 0,
the then-commands are executed
otherwise command2 is executed and if its exit status is 0,
the elif-commands are executed
otherwise the else-commands are executed

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 29 / 76

If Statements - Example

if gcc main.c; then
echo your C compiles

elif python3 main.c; then
echo you have written Python not C

else
echo program broken - send help

fi

if gcc a.c
then
you can not have an empty body
use a : statement which does nothing

:
else

rm a.c
fi

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 30 / 76

While Statements - syntax

shell while statements have this form:

while command
do

body-commands
done

the execution path depends on the exit status of command

command is executed and if its exit status is 0,
the body-commands are executed
and then command is executed and if its exit status is 0
the body-commands are executed
and …

if the exit status of command~ is not 0, execution of the loop stops

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 31 / 76

example - seq - simple version
#!/bin/dash
simple emulation of /usr/bin/seq for a COMP(2041|9044) example
andrewt@unsw.edu.au
Print the integers 1..n with no argument checking
last=$1
number=1
while test $number -le "$last"
do

echo $number
number=$((number + 1))

done
source code for seq.v0.sh

$./seq.v0.sh 3
1
2
3

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 32 / 76

example - seq - argument handling added
Print the integers 1..n or n..m
if test $# = 1
then

first=1
last=$1

elif test $# = 2
then

first=$1
last=$2

else
echo "Usage: $0 <last> or $0 <first> <last>" 1>&2
exit 1

fi
number=$first
while test $number -le "$last"
do

echo $number
number=$((number + 1))

done
source code for seq.v1.sh

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 33 / 76

example - seq - using [] instead of test
if [$# = 1]
then

first=1
last=$1

elif [$# = 1]
then

first=$1
last=$2

else
echo "Usage: $0 <last> or $0 <first> <last>" 1>&2
exit 1

fi
number=$first
while [$number -le $last]
do

echo $number
number=$((number + 1))

done
source code for seq.v2.sh

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 34 / 76

example - watching a website - argument checking

Repeatedly download a specified web page
until a specified regexp matches its source
then notify the specified email address.
#
For example:
watch_website.sh http://ticketek.com.au/ '[Tt]ayl(a|or) *[Ss]wift' andrewt@unsw.edu.au
repeat_seconds=300 #check every 5 minutes
if test $# = 3
then

url=$1
regexp=$2
email_address=$3

else
echo "Usage: $0 <url> <regex> <email-address>" 1>&2
exit 1

fi
source code for watch_website.sh

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 35 / 76

example - watching a website - main loop

while true
do

if curl --silent "$url"|grep -E "$regexp" >/dev/null
then

the 2nd echo is for testing, remove to really send email
echo "Generated by $0" |
echo mail -s "website '$url' now matches regex '$regexp'" "$email_address"
exit 0

fi
sleep $repeat_seconds

done
source code for watch_website.sh

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 36 / 76

For Statements in Shell

shell for statements have this form:

for var in word1 word2 word3
do

body-commands
...

done

the loop executes once for each word with var set to the word

break & continue statements can be in used inside for & while loops
with the same effect as C/Python

keywords such for, if, while, … are only recognised at the start of a command, e.g.:

$ echo when if else for
when if else for

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 37 / 76

Example - Shell Script accessing Command-line Arguments

echo "$a"
done
source code for accessing_args.sh

Example - Shell Script accessing Command-line Arguments

$./accessing_args.sh one two "three four"
one
two
three four

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 38 / 76

Using Exit Status for Conditional Execution

all commands are executed if separated by ; or newline, e.g:
cmd1 ; cmd2 ; ... ; cmdn
when commands are separated by &&
cmd1 && cmd2 && ... && cmdn
execution stops if a command has non-zero exit status
cmdn+1 is executed only if cmdn has zero exit status
when commands are separated by ||
cmd1 || cmd2 || ... || cmdn
execution stops if a command haszero exit status
cmdn+1 is executed only if cmdn has non-zero exit status
{} can be used to group commands
() also can be used to group commands - but executes them in a subshell

changes to variables and current working directory have no effect outside the subshell
exit status of group or pipeline of commands is exit status of last command

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 39 / 76

Conditional Execution Examples

run a.out if it exists and is executablr
test -x a.out && ./a.out

if directory tmp doesn't exist create it
test -d tmp || mkdir tmp

if directory tmp doesn't exist create it
{test -d tmp || mkdir tmp;} && chmod 755 tmp

but simpler is
mkdir -p tmp && chmod 755 tmp

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 40 / 76

{} versus () - example

$ cd /usr/share
$ x=123
$ (cd /tmp; x=abc;)
$ echo $x
123
$ pwd
/usr/share
$ { cd /tmp; x=abc; }
$ echo $x
abd
$ pwd
/tmp

changes to variables and current working directory have no effect outside a subshell

pipelines also executed in subshell, but variables and directory not usually changed in a pipeline

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 41 / 76

shellcheck - shell static analysis tool

shellcheck https://www.shellcheck.net/ statically analyzes shell scripts

finds possible bugs without running script

highly-recommended because it picks up many common shell coding mistakes

static analysis tools higly valuable because they give another way of checking for errors

faster/easier than testing

may find errors testing will miss

static analysis tools available for many languages

e.g. pyflakes, pylint, prospector for Python

compilers (e.g. gcc/clang) use static analysis to produce faster/smaller code and report possible bugs

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 42 / 76

example - renaming files - argument checking

Change the names of the specified files to lower case.
(simple version of the perl utility rename)
#
Note use of test to check if the new filename is unchanged.
#
Note the double quotes around $filename so filenames
containing spaces are not broken into multiple words
Note the use of mv -- to stop mv interpreting a
filename beginning with - as an option
Note files named -n or -e still break the script
because echo will treat them as an option,
if test $# = 0
then

echo "Usage $0: <files>" 1>&2
exit 1

fi
source code for tolower.sh

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 43 / 76

example - renaming files- main loop
for filename in "$@"
do

new_filename=$(
echo "$filename"|
tr '[:upper:]' '[:lower:]'
)

test "$filename" = "$new_filename" &&
continue

if test -r "$new_filename"
then

echo "$0: $new_filename exists" 1>&2
elif test -e "$filename"
then

mv -- "$filename" "$new_filename"
else

echo "$0: $filename not found" 1>&2
fi

done
source code for tolower.sh

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 44 / 76

read - shell builtin
read is a shell builtin which reads a line of input into variables(s)

non-zero exit status on EOF
newline is stripped
leading and trailing whitespace stripped unless variable IFS unset
note -r option if input might contains backslashes

if more than one variable specified, line is split into fields on white space
1st variable assigned 1st field, 2nd variable assigned 2nd field …
last variable entire remainder of line
if insufficient fields variables assigned empty strings

if more than one variable specified, line is split into fields on white space

$ read v
hello world
$ echo "$v"
hello world
$ read a b c
1 2 3 4 5
$ echo "a='$a' b='$b' c='$c'"
a='1' b='2' c='3 4 5'

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 45 / 76

read - simple example
echo -n "Do you like learning Shell? "
read answer
get first letter of answer connverted to lower case
answer="$(

echo "$answer"|
cut -c1|
tr A-Z a-z
)"

if test "$answer" = "y"
then

response=":)"
elif test "$answer" = "n"
then

response=":("
else

response="??"
fi
echo "$response"
source code for read_response_if.sh

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 46 / 76

emulating cat with read

#!/bin/dash
written by andrewt@unsw.edu.au for COMP(2041|9044)
over-simple /bin/cat emulation using read
setting the special variable IFS to the empty string
stops trailing white space being stripped
for file in "$@"
do

while IFS= read -r line
do

echo "$line"
done <$file

done
source code for read_cat.sh

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 47 / 76

case statements - syntax

case word in
pattern1)

commands1
;;

pattern2)
commands2
;;

patternn)
commandsN

esac

word is compared to each patterni in turn.
for the first patterni that matches
the corresponding commandsi is executed
and the case statement finishes.

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 48 / 76

case statements in Shell

case patterns use the same language as filename expansion (globbing)
in other words the special characters are * ? []
patterns are not interpreted as regexes

shell programmer used to use case statements heavily for efficiency
much less important now and many shell programmers don’t use case
but use of case can still make shell code more readable

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 49 / 76

case statement - examples

Checking number of command line args
case $# in
0) echo "You forgot to supply the argument" ;;
1) filename=$1 ;;
*) echo "You supplied too many arguments" ;;
esac

Classifying a file via its name
case "$file" in
*.c) echo "$file looks like a C source-code file" ;;
*.h) echo "$file looks like a C header file" ;;
*.o) echo "$file looks like a an object file" ;;
...
?) echo "$file's name is too short to classify" ;;
*) echo "I have no idea what $file is" ;;
esac

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 50 / 76

case - simple example

echo -n "Do you like learning Shell? "
read answer
case "$answer" in
[Yy]*)

response=":)"
;;

[Nn]*)
response=":("
;;

*)
response="??"

esac
echo "$response"
source code for read_response_case.sh

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 51 / 76

creating a 1001 file C program - getting started

this program creates 1000 files f0.c .. f999.c
file f$i.c contains function f$i which returns $i
for example file42.c contains function f42 which returns 42
main.c is created with code to call all 1000 functions
and print the sum of their return values
#
first add the initial lines to main.c
note the use of quotes on eof to disable variable interpolation
in the here document
cat >main.c <<'eof'
#include <stdio.h>
int main(void) {

int v = 0 ;
eof
source code for create_1001_file_C_program.sh

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 52 / 76

creating a 1001 file C program - creating the files

i=0
while test $i -lt 1000
do

add a line to main.c to call the function f$i
cat >>main.c <<eof
int f$i(void);
v += f$i();

eof
create file$i.c containing function f$i
cat >file$i.c <<eof

int f$i(void) {
return $i;

}
eof

i=$((i + 1))
done
source code for create_1001_file_C_program.sh

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 53 / 76

creating a 1001 file C program - compiling & running the program

cat >>main.c <<'eof'
printf("%d\n", v);
return 0;

}
eof
compile and run the 1001 C files
time clang main.c file*.c
./a.out
source code for create_1001_file_C_program.sh

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 54 / 76

shell functions

shell functions have this form:

name () {
commands

}

function arguments passed in: $@ $1 $2 …

use return to stop function execution and return exit status
beware: exit in a function still terminates entire program

local keyword can be used to limit scope of variables to function
local is not POSIX, but is widely supported although exact semantics vary

ksh does not support local, it has a similar keyword typeset

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 55 / 76

example - shell function

#!/bin/dash
written by andrewt@unsw.edu.au for COMP(2041|9044)
demonstrate simple use of a shell function
favourite_command() {

name=$1
command=$2
echo "My name is $name, my favourite Unix command is $command."

}
favourite_command Andrew "uniq"
favourite_command Dylan "jq"
favourite_command Grace "sed"
source code for favourite_command.sh

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 56 / 76

example - local variables in a shell function
print print numbers < 1000
note use of local Shell builtin to scope a variable
without the local declaration
the variable i in the function would be global
and would break the bottom while loop
local is not (yet) POSIX but is widely supported
is_prime() {

local n i
n=$1
i=2
while test $i -lt $n
do

test $((n % i)) -eq 0 &&
return 1

i=$((i + 1))
done
return 0

}
i=0
while test $i -lt 1000
do

is_prime $i &&
echo $i

i=$((i + 1))
done
source code for local.sh

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 57 / 76

example plagiarism detection - simple diff

Note use of diff -iw so changes in white-space or case are ignored
for file1 in "$@"
do

for file2 in "$@"
do

test "$file1" = "$file2" &&
break # avoid comparing pairs of assignments twice

if diff -iBw "$file1" "$file2" >/dev/null
then

echo "$file1 is a copy of $file2"
fi

done
done
source code for plagiarism_detection.simple_diff.sh

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 58 / 76

plagiarism detection - ignoring changes to comments
The substitution s/\/\/.*// removes // style C comments.
This means changes in comments won't affect comparisons.
Note use of temporary files is insecure - an attacker can anticipate the filename
TMP_FILE1=/tmp/plagiarism_tmp1$$
TMP_FILE2=/tmp/plagiarism_tmp2$$
for file1 in "$@"
do

for file2 in "$@"
do

test "$file1" = "$file2" &&
break # avoid comparing pairs of assignments twice

sed 's/\/\/.*//' "$file1" >$TMP_FILE1
sed 's/\/\/.*//' "$file2" >$TMP_FILE2
if diff -i -w $TMP_FILE1 $TMP_FILE2 >/dev/null
then

echo "$file1 is a copy of $file2"
fi

done
done
rm -f $TMP_FILE1 $TMP_FILE2
source code for plagiarism_detection.comments.sh

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 59 / 76

robust creation & removal of temporary files

our code can be more robust and more secure
by using mktemp to generate temporary file names

we can also use the builtin shell trap command
to ensure temporary files are removed however the script exits

temporary file creation is major source of security holes
be very careful creating temporary files

in all languages, use existing robust & well-tested code such as mktemp
don’t write your own code

mktemp is not (yet) standardized by POSIX

simple uses are portable to many platforms

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 60 / 76

plagiarism detection - ignoring changes to variable names #1
change all C strings to the letter 's'
and change all identifiers to the letter 'v'.
Hence changes in strings & identifiers will be ignored.
mktemp provide suitable temporary filename, robustly & securely
TMP_FILE1=$(mktemp)
TMP_FILE2=$(mktemp)
trap allows use to remove temporary files if program interrupted
trap 'rm -f $TMP_FILE1 $TMP_FILE2' EXIT
s/"["]*"/s/g changes strings to the letter 's'
It won't match a few C strings which is OK for our purposes
s/[a-zA-Z_][a-zA-Z0-9_]*/v/g changes variable names to 'v'
It will also change function names, keywords etc. which is OK for our purposes.
transform() {

sed '
s/\/\/.*//
s/"[^"]"/s/g
s/[a-zA-Z_][a-zA-Z0-9_]*/v/g
' $1

}
source code for plagiarism_detection.identifiers.sh

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 61 / 76

plagiarism detection - ignoring changes to variable names #2

for file1 in "$@"
do

for file2 in "$@"
do

test "$file1" = "$file2" &&
break # avoid comparing pairs of assignments twice

transform "$file1" >$TMP_FILE1
transform "$file2" >$TMP_FILE2
if diff -iBw $TMP_FILE1 $TMP_FILE2 >/dev/null
then

echo "$file1 is a copy of $file2"
fi

done
done
source code for plagiarism_detection.identifiers.sh

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 62 / 76

plagiarism detection - ignoring changes in code order
TMP_FILE1=$(mktemp)
TMP_FILE2=$(mktemp)
trap 'rm -f $TMP_FILE1 $TMP_FILE2' EXIT
Note the use of sort so line reordering won't prevent detection of plagiarism.
transform() {

sed '
s/\/\/.*//
s/"[^"]"/s/g
s/[a-zA-Z_][a-zA-Z0-9_]*/v/g
' $1|

sort
}
source code for plagiarism_detection.reordering.sh

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 63 / 76

Example - creating a temporary directory

securely & robustly create a new temporary directory
temporary_directory=$(mktemp -d)
ensure temporary directory + all its contents removed on exit
trap 'exit 1' INT TERM
trap 'rm -rf "$temporary_directory"; exit' EXIT
change working directory to the new temporary directory
cd "$temporary_directory" || exit 1
we are now in an empty directory
and create any number of files & directories
which all will be removed by the trap above
e.g. create one thousand empty files
seq 1 1000|xargs touch
print current directory and list files
pwd
ls -l
source code for create_temporary_directory.sh

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 64 / 76

Cryptographic hash function

algorithm maps byte sequence of any length to certain number of bits

e.g sha256 input: any number of bytes, output 256 bits (= 8 bytes) hash

one way function - not feasible to reverse

given a hash, not feasible to compute an input which produces that hash

collisions (different inputs producing the same hash) occur but are vanishingly rare

small change to input changes hash completely

many applications:

hashes of passwords stored rather than password itself
integrity check on set of files
fingerprint a file

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 65 / 76

plagiarism detection - using hashing
Improved version of plagiarism_detection.reordering.sh
Note use sha256sum to calculate a Cryptographic hash of the modified file
https://en.wikipedia.org/wiki/SHA-2
and use of sort && uniq to find files with the same hash
This allows execution time linear in the number of files
We could use a faster less secure hashing function instead of sha2
sha2hash() {

sed '
s/\/\/.*//
s/"[^"]"/s/g
s/[a-zA-Z_][a-zA-Z0-9_]*/v/g
' $1|

sort|
sha256sum

}
for file in "$@"
do

echo "$(sha2hash $file) $file"
done|
sort|
uniq -w32 -d --all-repeated=separate
source code for plagiarism_detection.hash.sh

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 66 / 76

example - using a signal to provide a time limit

my_process_id=$$
launch a asynchronous sub-shell that will kill
this process in a second
(sleep 1; kill $my_process_id) &
i=0
while true
do

echo $i
i=$((i + 1))

done
source code for async.v0.sh

command & executes command but does not wait for it to finish
sleep 1 suspends execution for a second
kill sends a signal to a process, which by default causes it to exit

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 67 / 76

intercepting signals with trap

trap specifies commands to be executed if a signal is received, e.g.:

count slowly and laugh at interrupts (ctrl-C)
catch signal SIGINT and print message
trap 'echo ha ha' INT
n=0
while true
do

echo "$n"
sleep 1
n=$((n + 1))

done
source code for laugh.sh

trap is useful for cleaning up temporary files before termination, e.g.

trap 'rm -f "$TMP_FILE";exit' INT TERM EXIT

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 68 / 76

example - catching a signal with trap

catch signal SIGTERM, print message and exit
trap 'echo loop executed $n times in 1 second; exit 0' TERM
launch a sub-shell that will terminate
this process in 1 second
my_process_id=$$
(sleep 1; kill $my_process_id) &
n=0
while true
do

n=$((n + 1))
done
source code for async.v1.sh

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 69 / 76

example - compiling in parallel

compile the files of a muti-file C program in parallel
use create_1001_file_C_program.sh to create suitable test data
On a CPU with n cores this can be (nearly) n times faster
If there are large number of C files we
may exhaust memory or operating system resources
for f in "$@"
do

clang -c "$f" &
done
wait for the incremental compiles to finish
and then compile .o files into single binary
wait
clang -o binary -- *.o
source code for parallel_compile.v0.sh

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 70 / 76

example - compiling in parallel

compile the files of a muti-file C program in parallel
use create_1001_file_C_program.sh to create suitable test data
on Linux getconf will tell us how many cores the machine has
otherwise assume 8
max_processes=$(getconf _NPROCESSORS_ONLN 2>/dev/null) ||

max_processes=8
NOTE: this breaks if a filename contains whitespace or quotes
echo "$@"|
xargs --max-procs=$max_processes --max-args=1 clang -c
clang -o binary -- *.o
source code for parallel_compile.v1.sh

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 71 / 76

example - compiling in parallel
$./create_1001_file_C_program.sh
$ echo *.c
file0.c file1.c file10.c file100.c file101.c file102.c ...
$ echo *.c|wc -w
1001
compiling 1 file at a time
$ time clang *.c
real 0m20.875s
user 0m13.016s
sys 0m7.835s
compiling all 1001 files simultaneously
$ time ./parallel_compile.v0.sh *.c
real 0m2.335s
user 0m9.066s
sys 0m8.788s
compiling 24 files at time
$ time ./parallel_compile.v1.sh *.c
real 0m1.971s
user 0m18.694s
sys 0m18.428s
$ grep 'model name' /proc/cpuinfo|sed 1q
model name : AMD Ryzen 9 3900X 12-Core Processor

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 72 / 76

example - compiling in parallel

compile the files of a multi-file C program in parallel
use create_1001_file_C_program.sh to create suitable test data
find's -print0 option terminates pathnames with a '\0'
xargs's --null option expects '\0' terminated input
as '\0' can not appear in file names this can handle any filename
on Linux getconf will tell us how many cores the machine has
if getconf assume 8
max_processes=$(getconf _NPROCESSORS_ONLN 2>/dev/null) ||

max_processes=8
find "$@" -print0|
xargs --max-procs=$max_processes --max-args=1 --null clang -c
clang -o binary -- *.o
source code for parallel_compile.v2.sh

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 73 / 76

example - compiling in parallel

compile the files of a muti-file C program in parallel
use create_1001_file_C_program.sh to create suitable test data
parallel clang -c '{}' ::: "$@"
clang -o binary -- *.o
source code for parallel_compile.v3.sh

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 74 / 76

Shell Variable Expansion - More Syntax
$ x=1
$ y=fred
$ echo xy
1fred
$ echo $xy # the aim is to display "1y"

$ echo "$x"y
1y
$ echo ${x}y
1y
$ echo ${j-10} # give value of j or 10 if no value
10
$ echo ${j=33} # set j to 33 if no value (and give $j)
33
$ echo ${x:?No Value} # display "No Value" if $x not set
1
$ echo ${xx:?No Value} # display "No Value" if $xx not set
-bash: xx: No Value

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 75 / 76

Bash arithmetic (()) extension example
print print numbers < 1000
Rewritten to use bash arithmetic extension (())
This makes the program more readable but less portable.
is_prime() {

local n i
n=$1
i=2
while ((i < n))
do

if ((n % i == 0))
then

return 1
fi
i=$((i + 1))

done
return 0

}
i=0
while ((i < 1000))
do

is_prime $i && echo $i
i=$((i + 1))

done
source code for bash_arithmetic.sh

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Shell 76 / 76

