
COMP(2041|9044) 25T1 — Python Introduction

https://www.cse.unsw.edu.au/~cs2041/25T1/

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Python Introduction 1 / 35

Python

Developed by Guido van Rossum in 1989.

Is a useful tool to know because it is:
one of the most widely-used languages
widely available on Unix-like and other operating systems
Python scripts occur many places in existing systems
libraries available for many, many purposes
prototyping code can be very fast
useful as interactive calculator

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Python Introduction 2 / 35

Zen of Python
>>> import this
Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one -- and preferably only one -- obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Python Introduction 3 / 35

Python

So what is the end product like?

a language which makes it easy to build useful systems

a language which makes it easy to prototype and iterate

a language with high level libraries and functions

interpreted: slow/high power consumption

type checking added as afterthought

see https://dropbox.tech/application/our-journey-to-type-checking-4-million-lines-of-python

Summary: it’s easy to write concise, powerful (but slow), readable programs in Python

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Python Introduction 4 / 35

Compilers versus Interpreters

compiler translates program to machine code which when executed implements program

$ clang hello.c -o hello
$./hello
Hello Andrew!

interpreter reads program and executes its statements directly

$ bash hello.sh
Hello Andrew!

reality more complicated
compilation typically complex multi-step process
compilers may bundle mini-interpreter into machine code
interpreters often do some run-time compilation to the bytecode of a virtual machine

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Python Introduction 5 / 35

Compiled Languages versus Interpreted Languages

in principle, all languages can be compiled or interpreted

usually only one or the other commonly used

languages usually compiled to machine code: C, C++, Rust, Go, Swift

languages usually interpreted: Python, Shell, JavaScript, R, Perl, Ruby, C#, Java, PHP

interpreters often translate program to intermediate form
intermediate form often thought as instruction of virtual (imaginary) machine
often called run-time-compilation or just-in-time-compilation
can also be to machine code

languages where both compiled & interpreted implementations common: Haskell, OCaml, Basic, Pascal, LISP

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Python Introduction 6 / 35

Resources

Python official documentation superb:

tutorial https://docs.python.org/3/tutorial/

library https://docs.python.org/3/library/

especially types https://docs.python.org/3/library/stdtypes.html

So many other online resources

Books:

Fluent Python - Luciano Ramalho

Python Cookbook - David Beazley

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Python Introduction 7 / 35

Which Python

Python 2.0 was released in 2000

Python 3.0 was released in 2008

Since 2020 only Python 3 is supported

New minor version release every 17 months (3.X) (PEP-602)

New patch version release every 2 months for 24 months (3.X.Y) (PEP-602/PEP-719)

Current version is 3.13

CSE servers currently run Python 3.11

all code you write for COMP(2041|9044) needs to work with Python 3.11
shouldn’t be an issue - no major new features in Python 3.12/3.13

huge amount of software libraries available

300+ standard modules
PyPI has 616,000 packages which can be easily installed

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Python Introduction 8 / 35

Running Python

Python programs can be invoked in several ways:

giving the filename of the Python program as a command line argument:

$ python3 code.py

giving the Python program itself as a command line argument:

$ python3 -c 'print("Hello, world")'

using the #! notation and making the program file executable:

$ head -n1 code.py
#! /usr/bin/env python3
$ chmod 755 code.py
$./code.py

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Python Introduction 9 / 35

Running Python

although converting code Python 2 -> 3 is straightforward, still many legacy Python 2 applications

Many systems have both Python 2 and Python 3 installed.

run python3 you get Python 3
run python2 you might get Python 2, or nothing
run python you might get Python 2, or Python 3, or nothing

CSE servers no long provide Python 2

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Python Introduction 10 / 35

Variables

Python has a strong, dynamic (gradual), duck type system.

Python provides many built-in types:

Numeric Types — int, float

float is 64 bit IEEE754 (like C double)
int is arbitrary

Text Sequence Type — str

Sequence Types — list, tuple, range

Mapping Types — dict

More: boolean, None, functions, class

More: complex, iterator, bytes, bytearray, memoryview, set, frozenset, context manager, type, code, …

Unlike C, you cannot have uninitialised variables

Variables can optionally be given a type hint for static type checking.

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Python Introduction 11 / 35

Comparison Operators

Python Comparison Operators are the same as C:

Operator Name Description

== Equal are both operands the same value
!= Not equal are both operands not the same value
> Greater than is the left operand bigger than the right

operand
< Less than is the left operand smaller than the

right operand
>= Greater than or equal to is the left operand bigger than or equal

to the right operand
<= Less than or equal to is the left operand smaller than or

equal to the right operand

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Python Introduction 12 / 35

Bitwise Operators

Python Bitwise Operators are the same as C:

Operator Name Description

& and Sets each bit to 1 if both bits are 1
| or Sets each bit to 1 if one of two bits is

1
^ xor Sets each bit to 1 if only one of two

bits is 1
~ not Inverts all the bits
« left shift (zero fill) Shift left by pushing zeros in from

the right, and let the leftmost bits
fall off

» right shift (sign extended) Shift right by pushing copies of the
leftmost bit in from the left, and let
the rightmost bits fall off

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Python Introduction 13 / 35

Arithmetic Operators

Python Arithmetic Operators are almost the same as C:

Operator Name

+ Addition
- Subtraction
* Multiplication
// Division (returns int)
/ Division (returns float)
% Modulus
** Exponentiation

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Python Introduction 14 / 35

Assignment Operators

Operator Name Example Equivalent

:= assignment x := 5 x := 5
&= and x &= 5 x = x & 5
|= or x |= 5 x = x | 5
^= xor x ^= 5 x = x ^ 5
«= left shift (zero fill) x «= 5 x = x « 5
»= right shift (sign extended) x »= 5 x = x » 5
+= Addition x += 5 x = x + 5
-= Subtraction x -= 5 x = x - 5
*= Multiplication x *= 5 x = x * 5
//= Division (returns int) x //= 5 x = x // 5
/= Division (returns float) x /= 5 x = x / 5
%= Modulus x %= 5 x = x % 5
**= Exponentiation x **= 5 x = x ** 5

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Python Introduction 15 / 35

Logical Operators

Unlike C, Python uses words for its logical operators:

C Python Description Example

x || y x or y Returns True if both
statements are true

a > 5 and a < 10

x && y x and y Returns True if one of the
statements is true

a < 0 or a > 100

!x not x Reverse the result, returns
False if the result is true

not (a > 100 and a
< 1000)

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Python Introduction 16 / 35

New Operators

Python also has new operators:

Type Python Description Example

Identity x is y Returns True if both
variables are the same

object

a = []; b = a; a
is b

Identity x is not y Returns True if both
variables are not the same

object

a = []; b = []; a
is not b

Membership x in y Returns True if a sequence
with the specified value is
present in the object

5 in [4, 5, 6]

Membership x not in y Returns True if a sequence
with the specified value is
not present in the object

7 not in [4, 5, 6]

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Python Introduction 17 / 35

Missing Operators

Python has two notable absences from the list of C operators:

Operator C Python

Increment x++ x += 1
Decrement x-- x -= 1

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Python Introduction 18 / 35

Operators

Examples:

x = '123'
`x` assigned string "123"
y = "123 "
`y` assigned string "123 "
z = 123
`z` assigned integer 123
a = z + 1
addition (124)
b = x + y
concatenation ("123123 ")
c = y + z
invalid (cannot concatenate int to str)
d = x == y
compare `x` and `y` (False)

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Python Introduction 19 / 35

Python - what is True

False is false

None is false

numeric zero is false

e.g. 0 0.0

empty sequences, mappings, collections are false

so empty, strings, lists, tuples, dicts are false false
e.g. "" [] () {} set()

everything else is true

beware all these values true: "0" [0] (None,) [[]]

but (None) is false - because its not a tuple just a bracketed value

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Python Introduction 20 / 35

Control Structures

Python doesn’t require the use of semicolon ; between or to end statements. Use of a semicolon ; is not
recommended in normal code, but can be useful when supply Python on command-line. All of there are valid:

x = 1
print("Hello")

x = 1;
print("Hello")

x = 1;
print("Hello");

x = 1; print("Hello")

x = 1; print("Hello");

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Python Introduction 21 / 35

Control Structures

All statements within control structures must be after a colon : Python uses indentation to show code blocks (C uses
{ and }).
Using brackets around the condition is optional.

if (x > 9999):
print("x is big")

if (x > 9999): print("x is big")

if (x > 9999):
print("x is big")
print(f"the value of x is {x}")

if x > 9999: print("x is big")

if x > 9999:
print("x is big")
print(f"the value of x is {x}")

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Python Introduction 22 / 35

Control Structures - Selection

Selection is handled by: if -> elif -> else

if boolExpr{1}:
statements{1}

elif boolExpr{2}:
statements{2}

...
else:
statements{n}

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Python Introduction 23 / 35

Control Structures - Iteration

Iteration is handled by: while and for

while boolExpr:
statements

for value in iterator:
statements

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Python Introduction 24 / 35

Control Structures - Iteration

C style for loops can be approximated with the range() function (range() is inclusive on its lower-bound
(default 0) and exclusive on its upper-bound (with a default step-size of 1))

for value in range(90, 100, 2):
print(value)

90
92
94
96
98

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Python Introduction 25 / 35

Control Structures - Iteration

break and continue can be used in loops just as in C: - break will end the loop - continue starts the next
iteration of the loop

else can be used on loops, the else case is executed if the loop exits normally (without a break)

for value in range(a + 1, b):
if is_prime(value):

print(f"At least one prime between {a} and {b}")
break

else:
print(f"No primes between {a} and {b}")

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Python Introduction 26 / 35

Control Structures - Iteration

Example (compute 𝑝𝑜𝑤 = 𝑘𝑛):

Method 1 ... while
pow = i = 1
while i <= n:

pow = pow * k
i += 1

Method 2 ... for
pow = 1
for _ in range(n):

pow *= k
Method 3 ... built-in operator
pow = k ** n;
Method 4 ... operator
from operator import pow as power
pow = power(k, n);

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Python Introduction 27 / 35

Control Structures - Selection

*selection can also be done with: match -> case

match var:
case option{1}:

statements{1}
case option{2} | option{3} | option{4}:

statements{2}
...
case option{n}:

statements{n}
case _:

statements{default}

match / case in python can do anything a C switch / case can do plus much more.

Added in Python 3.10 - missing in older Python 3 installations

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Python Introduction 28 / 35

Terminating

Normal termination, call: sys.exit()

The assert or the raise keywords can be used for abnormal termination:

Example:

import sys

if not is_valid:
print("something wasn't valid", file=sys.stderr)
sys.exit(1)

assert data is not None, "data was None, it shouldn't be"

def func (a):
if not isinstance(a, int):
raise TypeError(f"\'{a}\' is not of type <int>")

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Python Introduction 29 / 35

Simple I/O example

import math
x = float(input("Enter x: "))
y = float(input("Enter y: "))
pythagoras = math.sqrt(x**2 + y**2)
print(f"Square root of {x} squared + {y} squared is {pythagoras}")
source code for pythagoras.py

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Python Introduction 30 / 35

Simple I/O example - Reading Lines #1

sum = 0
for line in stdin:

sum += int(line)
print(f"Sum of the numbers is {sum}")
source code for sum_stdin.0.py

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Python Introduction 31 / 35

Simple I/O example - Reading Lines #2

sum = 0
for line in stdin:

try:
sum += int(line)

except ValueError as e:
print(e)

print(f"Sum of the numbers is {sum}")
source code for sum_stdin.1.py

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Python Introduction 32 / 35

Simple String Manipulation Example

try:
line = input("Enter some input: ")

except EOFError:
print("could not read any characters")
exit(1)

n_chars = len(line)
print(f"That line contained {n_chars} characters")
if n_chars > 0:

first_char = line[0]
last_char = line[-1]
print(f"The first character was '{first_char}'")
print(f"The last character was '{last_char}'")

source code for line_chars.py

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Python Introduction 33 / 35

Simple String Comparison Example

last = None
while True:

try:
curr = input("Enter line: ")

except EOFError:
print()
break

if curr == last:
print("Snap!")
break

last = curr
source code for snap_consecutive.py

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Python Introduction 34 / 35

Creating A Gigantic String

if len(sys.argv) != 2:
print(f"Usage: {sys.argv[0]}: <n>")
exit(1)

n = 0
string = "@"
while n < int(sys.argv[1]):

string *= 2
or `string += string`
or `string = string + string`
n += 1

print(f"String of 2^{n} = {len(string)} characters created")
source code for exponential_concatenation.py

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — Python Introduction 35 / 35

