
COMP(2041|9044) 25T1 — GIT

https://www.cse.unsw.edu.au/~cs2041/25T1/

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — GIT 1 / 22

https://www.cse.unsw.edu.au/~cs2041/25T1/
https://www.cse.unsw.edu.au/~cs2041/25T1/

Things developers want

Tell me what changes were recently made to this file?
Tell me who added this line of code? When? Why?
Take all files back to the way they were 2 weeks ago
2 coders have been working independently on the system - combine their work safely
Develop new system features in parallel but still incorporate bug fixes being made to the main release
Allow me to propose this bug fix and get comments from other developers
Record that these code changes fix this bug report.

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — GIT 2 / 22

https://www.cse.unsw.edu.au/~cs2041/25T1/

Git

Git is a Version Control System (VCS)
Track changes to a file or set of files over time
so that you can recall specific versions later

Git is open source under the GPLv2 licence
Git git repo
Created for and still used by Linus Torvalds for the linux kernel

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — GIT 3 / 22

https://git.kernel.org/pub/scm/git/git.git/
https://www.cse.unsw.edu.au/~cs2041/25T1/

Other VCS

SCCS
RCS
CVS
Subversion
Mercurial
Fossil
etc.

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — GIT 4 / 22

https://pubs.opengroup.org/onlinepubs/9699919799/utilities/sccs.html
https://www.gnu.org/software/rcs/
https://www.nongnu.org/cvs/
https://subversion.apache.org/
https://www.mercurial-scm.org/
https://fossil-scm.org/home/
https://www.cse.unsw.edu.au/~cs2041/25T1/

VCS terminology

Repository (repo)
Branches

Default Branch (master/main/trunk)
Tags
Commits
Index

Staging
Working Directory

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — GIT 5 / 22

https://www.cse.unsw.edu.au/~cs2041/25T1/

Repository

Many VCSs use the notion of a repository

store all versions of all objects (files) managed by VCS
may be single file, directory tree, database,...
possibly accessed by filesystem, http, ssh or custom protocol
possibly structured as a collection of projects

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — GIT 6 / 22

https://www.cse.unsw.edu.au/~cs2041/25T1/

Git Repository
Git uses the sub-directory .git to store the repository.

Inside .git there are (among other things):

Objects
Blobs are file contents

no file names, permissions, links, etc.
Trees are directory listings

model the file system
this is where: file names, permissions, links, etc. live
trees can also point to other trees to store subdirectories

Commits are snapshots
represents the state of the working directory at a particular time
has a list of parent commits
stores meta info: author, committer, message, etc.
points to a tree that represents the file structure at the time of the commit

Refs are pointers
Branches

branches provide dynamic pointers to the commits we care about
contain hex strings referencing the Object ID of a commit

Tags
tags provide static pointers to historic commits
contain hex strings referencing the Object ID of a commit

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — GIT 7 / 22

https://www.cse.unsw.edu.au/~cs2041/25T1/

Inside a Git Repository

A new git repository is created with git init will have the following structure:

$ tree .git
.git/
├── config
├── HEAD
├── objects
└── refs

├── heads
└── tags

Some files are not shown as they are not relevant for us.

branches/ is a deprecated implementation of heads/
description is only used by the gitweb program
hooks/ is used for git hooks (very useful, but not relevant for us)
info/ is used for git logs and metadata (not relevant for us)

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — GIT 8 / 22

https://www.cse.unsw.edu.au/~cs2041/25T1/

Inside a Git Repository
Once we have added some files and made some commits the structure may look like this:

$ tree .git
.git/
├── config
├── HEAD
├── objects
│ ├── 63
│ | ├── 438577f200a1323959c79c6bcbebd98b52f95c
│ | ├── 8bd101ad9ff2a7f224fa89062a693d2afa4964
│ | └── <more objects>
│ ├── 8d
│ | └── <more objects>
│ ├── c2
│ | └── <more objects>
│ ├── ff
│ | └── <more objects>
│ └── <more objects>
└── refs

├── heads
│ ├── master
│ ├── develop
| ├── feature
| | ├── feature1
| | ├── feature2
| | └── <more branches>
│ └── <more branches>
├── remotes
│ └── origin
│ ├── HEAD
│ └── master
└── tags

├── v1.0
├── v1.1
├── v1.2
├── v2.0
├── v2.1
└── v3.0

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — GIT 9 / 22

https://www.cse.unsw.edu.au/~cs2041/25T1/

Inside a Git Repository

HEAD is a special file that points to the current ref

This is usually a branch
But it can also be a tag or a specific commit

refs/heads/ contains all the branches refs/tags/ contains all the tags refs/remotes/ contains all the
remote branches

refs are simply pointers to commits

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — GIT 10 / 22

https://www.cse.unsw.edu.au/~cs2041/25T1/

Inside a Git Repository

objects/ contains all the objects

each object is a 20 byte SHA1 hash of the object contents
stored as a 40 character hex string.

the first two characters of the hash are used as a directory name
with the remaining 38 characters as the file name.

objects are stored compressed, so can’t be read directly

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — GIT 11 / 22

https://www.cse.unsw.edu.au/~cs2041/25T1/

Inside a Git Repository

git ls-files -s
lists all objects in the index

git cat-file -t <object>
prints the type of the object

git cat-file -p <object>
prints the contents of the object

git cat-file --batch-check --batch-all-objects
list all objects, their type and size

git rev-list --objects --all
list all objects and their name (if they have one)

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — GIT 12 / 22

https://www.cse.unsw.edu.au/~cs2041/25T1/

Git Repository Overview
Boxes are blobs, Triangles are trees, Circles are commits

Figure 1: https://github.blog/wp-content/uploads/2020/12/object-model-ref.png

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — GIT 13 / 22

https://www.cse.unsw.edu.au/~cs2041/25T1/

Git Repo Hosting

Some of the best known Git repo hosting services

GitHub
GitLab

UNSW CSE GitLab
BitBucket
SourceForge
etc.

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — GIT 14 / 22

https://github.com/
https://about.gitlab.com/
https://gitlab.cse.unsw.edu.au
https://bitbucket.org/
https://sourceforge.net/
https://www.cse.unsw.edu.au/~cs2041/25T1/

Why Git?

distributed VCS - multiple repositories, no oracle
every user has their own repository
created by Linus Torvalds for Linux kernel
external revisions imported as new branches
flexible handling of branching
various auto-merging algorithms
not better than competitors but better supported/more widely used (e.g. github/gitlab/bitbucket)
at first stick with a small subset of commands
substantial (exponential) time investment to learn to use Git’s full power

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — GIT 15 / 22

https://www.cse.unsw.edu.au/~cs2041/25T1/

git commands
The 80/20 rule:
80% of the time you run the same 20% of the available commands.

The BIG 7:

git init [<name>] or git clone <URI>
git status
git add <file>...
git commit [-m "<message>"]
git pull
git push

The others:

git branch <branch>
git checkout <branch>
git fetch
git log
git stash
git cherry-pick
git bisect
git blame

For the power user:

git merge
git rebase
git remote
git submodule
etc.

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — GIT 16 / 22

https://www.cse.unsw.edu.au/~cs2041/25T1/

git init

git-init - Create an empty Git repository

How every repository starts.

git init [options] # turn the current directory into a git repo
git init [options] <dir> # create a new directory `dir` that is a git repo

Has some very rarely used options:

--bare repo without a working directory, can’t commit to the repo.
--template files to copy into .git upon creation.
--separate-git-dir create a working directory for a repo located elsewhere
--shared share the repo amongst several users

Reads some very rarely used environment variables:

$GIT_DIR if set use $GIT_DIR not .git as the name of the base of the repository
$GIT_OBJECT_DIRECTORY store object files here instead of $GIT_DIR/objects

99% of the time you will use git init without options.

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — GIT 17 / 22

https://www.cse.unsw.edu.au/~cs2041/25T1/

git clone

git-clone - Clone a repository into a new directory

How repositories are shared.

git clone [options] <repoURL> # clone the git repo from `repoURL` into a directory named after itself
git clone [options] <repoURL> <dir> # clone the git repo from `repoURL` into a directory named `dir`

Has many (rarely used) options:

--bare similar to git init --bare
--sparse start with only the files in the root of the repository
-o/--origin <name> use <name> instead of origin for the upstream repository
-b/--branch <name> checkout the <name> branch instead of master/main
--recurse-submodules initialize and clone submodules
-j/--jobs the number of fetches to do at the same time

85% of the time you will use git clone without options.
Another 10% will just use the --recurse-submodules option.

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — GIT 18 / 22

https://www.cse.unsw.edu.au/~cs2041/25T1/

git status

git-status - Show the working tree status

How you know the state of a repository.

git status [options]
git status [options] <path> ...

Has many options.
The most used options being:

-s/--short output in “short-format”
--long output in “long-format” (default)
--porcelain [<version>] easy-to-parse format for scripts, with the API <version>
-v/--verbose show the textual changes that are staged to be committed

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — GIT 19 / 22

https://www.cse.unsw.edu.au/~cs2041/25T1/

Tracking a Project with Git

Project must be in single directory tree.
Usually don’t want to track all files in directory tree
Don’t track binaries, derived files, temporary files, large static files, secrets, etc.
Use .gitignore files to indicate files never want to track
Use git add <file> to indicate you want to track file
Careful: git add <directory> will recursively add every file in directory

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — GIT 20 / 22

https://www.cse.unsw.edu.au/~cs2041/25T1/

git add

git-add - Add file contents to the index

git add [options] <path> ...

-n/--dry-run don’t actually add anything, just show what would be added
-f/--force add ignored files
-i/--interactive add interactively
-A/--all add all files already in the index
-N/--intent-to-add mark files as tracked but don’t save their contents

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — GIT 21 / 22

https://www.cse.unsw.edu.au/~cs2041/25T1/

git commit

git-commit - Record changes to the repository

git commit [options] [-m <message>] [--] <path> ...

-m/--message <message> use <message> as the commit message (almost always used)
-a/--all automatically stage all tracked files before committing
-C/--reuse-message <commit> use the commit message from <commit>
--amend replace the previous commit with a new one
--author <author> use <author> instead of the current user
--date <date> use <date> instead of the current date
--allow-empty allow empty commits (useful for CI/CD pipelines)

if --message is not used, git commit will open an editor for you to write the commit message.
This allows you to write a longer, multi-line, commit message.

https://www.cse.unsw.edu.au/~cs2041/25T1/ COMP(2041|9044) 25T1 — GIT 22 / 22

https://www.cse.unsw.edu.au/~cs2041/25T1/

