COMP(2041]9044) 24T2 — Python Regular Expressions

https://www.cse.unsw.edu.au/~cs2041/24T2/

https:/ /www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041|9044) 24T2 — Python Regular Expressions 1/28

Regular Expression History Revisited

1950s mathematician Stephen Kleene develops theory
@ 1960s Ken Thompson develops syntax and practical implementation, two versions:

o POSIX Basic Regular Expressions
@ limited syntax, e.gno |
@ used by grep & sed
@ needed when computers were every slow to make regex matching faster

e POSIX Extended Regular Expressions - superset of Basic Regular Expressions
@ used by grep -E &sed -E

1980s Henry Spencer produces open source regex C library
o used many place e.g. postgresql, tcl
o extended (added features & syntax) to Ken's regex language.
1987 Perl (Larry Wall) copied Henry's library & extended much further
o available outside Perl via Perl Compatible Regular Expressions library
o used by grep -P
1990s Python standard re package also copied Henry's library
o added most of the features in Perl/PCRE
e many commonly used features are common to both
we will cover some (not all) useful extra regex features found in both Python & Perl/PCRE
note https://regex101.com/ lets you specify which regex language

https:/ /www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041/9044) 24T2 — Python Regular Expressions 2/28

Python re package - useful functions

re.search(regex, string, flags)

re.match(regex, string, flags)

re.fullmatch(regex, string, flags)

https:/ /www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041|9044) 24T2 — Python Regular Expressions 3/28

Python re package - useful functions

re.sub(regex, replacement, string, count, flags)
return xstring* with anywhere *regex* matches, substituted by *replacementx*
optional parameter x*countx, if non-zero, sets maximum number of substitutions

re.findall(regex, string, flags)

return all non-overlapping matches of pattern in string
1f pattern contains () return part matched by ()

1f pattern contains multiple () return tuple

re.split(regex, string, maxsplit, flags)
Split *string* everywhere *regex* matches
optional parameter *maxsplitx, i1f non-zero, set maximum number of splits

https:/ /www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041|9044) 24T2 — Python Regular Expressions 4]28

Python Characters Classes (also in PCRE)

\d matches any digit, for ASCIl: [0-9]

\D matches any non-digit, for ASCIl: [*0-9]

\w matches any word char, for ASCIl: [a-zA-Z_0-9]

\W matches any non-word char, for ASCIl: [*a-zA-Z_0-9]
\s matches any whitespace, for ASCIl: [\t\n\r\f]

\S matches any non-whitespace, for ASCIl: [» \t\n\r\f]
\b matches at a word boundary

\B matches except at a word boundary

\A matches at the start of the string, same as

\Z matches at the end of the string, same as $

@ convenient and make your regex more likely to be portable to non-English locales
@ \b and \B are like » and $ - they don’t match characters, they anchor the match

https:/ /www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041/9044) 24T2 — Python Regular Expressions 5/28

raw strings

@ Python raw-string is prefixed with an r (for raw)
e can prefix with r strings quoted with * " "' nmn
@ backslashes have no special meaning in raw-string except before quotes
e backslashes escape quotes but also stay in the string
@ regexes often contain backslashes - using raw-strings makes them more readable

>>> print('Hello\nAndrew')
Hello

Andrew

>>> print(r'Hello\nAndrew')
Hello\nAndrew

>>> r'Hello\nAndrew' == 'Hello\\nAndrew'
True

>>> len('\n'")

1

>>> len(r'\n')

2

https:/ /www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041|9044) 24T2 — Python Regular Expressions 6/28

Match objects

@ re.search, re.match, re.fullmatch return a match object if a match suceeds, None if it fails
@ hence their return can to control i f or while

print("Destroy the file system? ")

answer = "dnput()

if re.match(r'yes|ok|affirmative', answer, flags=re.I):
subprocess.run("rm -r /", Shell=True)

@ the match object can provide useful information:
>>> m = re.search(r'[aiou].*[aeiou]', 'pillow')
>>> m
<re.Match object; span=(1, 5), match="illo'>
>>> m.group(0)
"illo'
>>> m.span()

(1, 5)
>>>

https:/ /www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041|9044) 24T2 — Python Regular Expressions 7/28

Capturing Parts of a Regex Match

@ brackets are used for grouping (like arithmetic) in extened regular expresions
@ in Python (& PCRE) brackets also capture the part of the string matched
@ group(n) returns part of the string matched by the nth-pair of brackets
>>> m = re.search(' (\w+)\s+(\w+)', 'Hello Andrew')
>>> m.groups()
('Hello', 'Andrew')
>>> m.group(l)
"Hello'
>>> m.group(2)
"Andrew’

@ \number can be used to refer to group number in an re. sub replacement string

>>> re.sub(r'(\d+) and (\d+)', r'\2 or \1', "The answer is 42 and 43?")
"The answer i1s 43 or 427?'

https:/ /www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041/9044) 24T2 — Python Regular Expressions 8/28

Back-referencing

@ \number can also be used in a regex as well
@ usually called a back-reference
e eg.r'A(\d+) (\1)$' matchthe same integer twice

>>> re.search(r'A(\d+) (\d+)$', '42 43')
<re.Match object; span=(0, 5), match='42 43'>
>>> re.search(r'A(\d+) (\1)$', '42 43'")
>>> re.search(r'A(\d+) (\1)s$', '42 42'")
<re.Match object; span=(0, 5), match='42 42'>

@ back-references allow matching impossible with classical regular expressions

@ python supports up to 99 back-references, \ 1, \2, \3, .., \99

e \01lor\100 isinterpreted as an octal number

https:/ /www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041|9044) 24T2 — Python Regular Expressions 9/28

Non-Capturing Group

@ (?:...) isanon-capturing group
@ it has the same grouping behaviouras (...)
e it doesn't capture the part of the string matched by the group

>>> m = re.search(r'.x(?:[aeiou]).x([aeiou]).*"',
>>> m

<re.Match object; span=(0, 5), match="abcde'>
>>> m.group(l)

!el

https:/ /www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041|9044) 24T2 — Python Regular Expressions

Greedy versus non-Greedy Pattern Matching

@ The default semantics for pattern matching is greedy:
@ starts match the first place it can succeed
o make the match as long as possible
@ The ? operator changes pattern matching to non-greedy:
e starts match the first place it can succeed
e make the match as short as possible

>>> s = "abbbc"
>>> re.sub(r'ab+', 'X', s)
! XC !
>>> re.sub(r'ab+?', 'X', s)
"Xbbc'
https:/ /www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041]9044) 24T2 — Python Regular Expressions

Why Implementing a Regex Matching isn't Easy

@ regex matching starts match the first place it can succeed

@ but a regex can partly match many places

>>> re.sub(r'ab+c', 'X', "abbabbbbbbbabbbc")
"abbabbbbbbbX '

@ and may need to backtrack, e.g:

>>> re.sub(r'a.xbc', 'X', "abbabbbbbbbcabbb")
'Xabbb'

@ poorly designed regex engines can get very slow

o have been used for denial-of-service attacks
@ Python (PCRE) regex matching is NP—hard due to back-references

https:/ /www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041|9044) 24T2 — Python Regular Expressions

"abcde')

10/28

11/28

12/28

re.findall

@ re.findall returns a list of the matched strings, e.g:

>>> re.findall(r'\d+', "-5==10zzz200_")
[|5|, ll@l, |2®O|]

@ if the regex contains () only the captured text is returned

>>> re.findall(r'(\d)\d*x', "-5==10zzz200_")
|:|5|, ll" |2|:|

@ if the regex contains multiple () a list of tuples is returned
>>> re.findall(r'(\d)\dx(\d)', "-5==10zzz200_")
[('yt'y, 'e"), ('2', 'e')l
>>> re.findall(r'([*,]1*), (\S+)', "Hopper, Grace Brewster Murray")
[('"Hopper', 'Grace')]
>>> re.findall(r'([A-Z]) ([aeiou])', "Hopper, Grace Brewster Murray")
[(IHI’ |ol), (|M|’ |ul):|

https:/ /www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041|9044) 24T2 — Python Regular Expressions 13/28

re.split

@ re.split splits a string where a regex matches

>>> re.split(r'\d+', "-5==10zzz200_")
[l_l, |::|’ 'ZZZ', 1 l]

@ like cut in Shell scripts - but more powerful

@ for example, you can't do this with cut

>>> re.split(r'\s*,\sx', "abc,de, ghi ,jk , mn")
['abc', 'de', 'ghi', 'jk', 'mn']

see also the string join function

>>> a = re.split(r'\sx,\sx', "abc,de, ghi ,jk , mn'")
>>> a

['abc', 'de', 'ghi', 'jk', 'mn']

>>> ':'".join(a)

'abc:de:ghi:jk:mn’

https:/ /www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041/9044) 24T2 — Python Regular Expressions 14 /28

Example - printing the last number

Print the last number (real or integer) on every line
Note: regexp to match number: -?\d+\.?\d*
Note: use of assignment operator :=
import re, sys
for line in sys.stdin:
if m := re.search(r'(-2\d+\.?2\d*x)\Dx$', line):
print(m.group(1l))

source code for print_last_number.py

https:/ /www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041|9044) 24T2 — Python Regular Expressions 15/28

Example - finding numbers #0

print the sum and mean of any positive integers found on stdin
Note regexp to split on non-digits
Note check to handle empty string from split
Only positive integers handled
import re, sys
input_as_string = sys.stdin.read()
numbers = re.split(r'"\D+", dinput_as_string)
total = 0
n==20
for number 1in numbers:
if number:
total += int(number)
n += 1
if numbers:
print(f"{n} numbers, total {total}, mean {total / n:.1f}")

source code for find_numbers.0.py

https:/ /www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041|9044) 24T2 — Python Regular Expressions 16 /28

Example - finding numbers #1

print the sum and mean of any numbers found on stdin
Note regexp to match number -2?\d+\.?\dx
match postive & negative integers & floating-point numbers
import re, sys
input_as_string = sys.stdin.read()
numbers = re.findall(r"-?\d+\.?\dx", dinput_as_string)
n = len(numbers)
total = sum(float(number) for number in numbers)
if numbers:
print(f"{n} numbers, total {total}, mean {total / n:.1f}")

source code for find_numbers.1.py

https:/ /www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041/9044) 24T2 — Python Regular Expressions 17/28

Example - counting enrollments with regexes & dicts

course_names = {}
with open(COURSE_CODES_FILE, encoding="utf-8") as f:
for line in f:
if m := re.match(r"(\S+)\s+(.*x\S)", line):
course_names[m.group(1l)] = m.group(2)
enrollments_count = {}
with open(ENROLLMENTS_FILE, encoding="utf-8") as f:
for line in f:
course_code = re.sub(r"\|[.*x\n", "", line)
if course_code not 1in enrollments_count:
enrollments_count[course_code] = 0
enrollments_count[course_code] += 1
for (course_code, enrollment) in sorted(enrollments_count.items()):
1f no name for course_code use ???
name = course_names.get(course_code, "?7?2")
print(f"{enrollment:4} {course_code} {name}'")

source code for count_enrollments.0.py

https:/ /www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041|9044) 24T2 — Python Regular Expressions 18/28

Example - counting enrollments with split & counters

course_names = {}
with open(COURSE_CODES_FILE, encoding="utf-8") as f:
for line 1in f:
course_code, course_name = line.strip().split("\t", maxsplit=1)
course_names[course_code] = course_name
enrollments_count = collections.Counter()
with open(ENROLLMENTS_FILE, encoding="utf-8") as f:
for line 1in f:
course_code = line.split("|")[0]
enrollments_count[course_code] += 1
for (course_code, enrollment) in sorted(enrollments_count.items()):

name = course_names.get(course_code, "?777?")
print(f"{enrollment:4} {course_code} {name}'")

source code for count_enrollments.1.py

https:/ /www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041|9044) 24T2 — Python Regular Expressions 19/28

Example - counting first names

already_counted = set()
first_name_count = collections.Counter()
with open(ENROLLMENTS_FILE, encoding="utf-8") as f:
for line in f:
_, student_number, full_name = line.split("|")[0:3]
if student_number in already_counted:

continue
already_counted.add(student_number)
if m := re.match(r".*,\s+(\S+)", full_name):

first_name = m.group(1)
first_name_count[first_name] += 1

count_name_tuples = [(c, f) for (f, c) in first_name_count.items()]

for (count, first_name) 1in sorted(count_name_tuples, reverse=True):
print(f"{count:4} {first_name}")

source code for count_first_names.py

https:/ /www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041/9044) 24T2 — Python Regular Expressions 20/28
Example - finding duplicate first names using dict of dicts

course_first_name_count = {}
with open(ENROLLMENTS_FILE, encoding="utf-8") as f:
for line 1in f:
course_code, _, full_name = line.split("|")[0:3]
if m := re.match(r".*,\s+(\S+)", full_name):
first_name = m.group(1l)
else:
print("Warning could not parse line'", line.strip(), file=sys.stderr)
continue
if course_code not 1in course_first_name_count:
course_first_name_count[course_code] = {}
if first_name not in course_first_name_count[course_code]:
course_first_name_count[course_code][first_name] = 0
course_first_name_count[course_code][first_name] += 1
for course in sorted(course_first_name_count.keys()):
for (first_name, count) in course_first_name_count[course].items():
if count >= REPORT_MORE_THAN_STUDENTS:
print(course, '"has'", count, "students named", first_name)

source code for duplicate_first_names.0.py

https:/ /www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041|9044) 24T2 — Python Regular Expressions 21/28

Example - finding duplicate first names using split & defaultdict of counters

course_first_name_count = collections.defaultdict(collections.Counter)
with open(ENROLLMENTS_FILE, encoding="utf-8") as f:
for line 1in f:
course_code, _, full_name = line.split("|")[0:3]
given_names = full_name.split(",")[1].strip()
first_name = given_names.split(" ") [0]
course_first_name_count[course_code][first_name] += 1
for (course, name_counts) 1in sorted(course_first_name_count.items()):
for (first_name, count) in name_counts.items():
if count > REPORT_MORE_THAN_STUDENTS:
print(course, "has", count, "students named", first_name)

source code for duplicate_first_names.1.py

https:/ /www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041|9044) 24T2 — Python Regular Expressions 22/28

Example - Changing Filenames with Regex

written by andrewt@unsw.edu.au for COMP(2041|9044)
Change the names of the specified files
by substituting occurrances of regex with replacement
(simple version of the perl utility rename)
import os
import re
import sys
if len(sys.argv) < 3:
print(f"Usage: {sys.argv[0]} <regex> <replacement> [files]", file=sys.stderr)
sys.exit(1l)
regex = sys.argv[1]
replacement = sys.argv([2]
for old_pathname in sys.argv[3:]:
new_pathname = re.sub(regex, replacement, old_pathname, count=1)
if new_pathname == old_pathname:
continue
if os.path.exists(new_pathname):
print(f"{sys.argv[0]}: '{new_pathname}' exists'", file=sys.stderr)
continue
try:
os.rename (old_pathname, new_pathname)
except OSError as e:
print(f"{sys.argv[0]}: '{new_pathname}' {e}'", file=sys.stderr)
source code for rename_regex.py

https:/ /www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041/9044) 24T2 — Python Regular Expressions 23/28

Example - Changing Filenames with Regex & EVal

https:/ /www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041|9044) 24T2 — Python Regular Expressions 24/28

Example - When Harry Met Hermione #0

For each file given as argument replace occurrences of Hermione
allowing for some misspellings with Harry and vice-versa.
Relies on Zaphod not occurring in the text.
import re, sys, os
for filename 1in sys.argv[1l:]:
tmp_filename = filename + ".new"
if os.path.exists(tmp_filename):
print(f"{sys.argv[0]}: {tmp_filename} already exists\n'", file=sys.stderr;
sys.exit(1l)
with open(filename) as f:
with open(tmp_filename, "w") as g:
for line 1in f:
changed_1line = re.sub(r"Herm[io]+ne", "Zaphod", line)
changed_1line changed_T1line.replace("Harry", "Hermione'")
changed_1line changed_1line.replace("Zaphod", "Harry'")
g.write(changed_1line)
os.rename(tmp_filename, filename)

source code for change_names.0.py

https:/ /www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041|9044) 24T2 — Python Regular Expressions 25/28

Example - When Harry Met Hermione #1

For each file given as argument replace occurrences of Hermione
allowing for some misspellings with Harry and vice-versa.
Relies on Zaphod not occurring in the text.
import re, sys, os, shutil, tempfile
for filename 1in sys.argv[1l:]:
with tempfile.NamedTemporaryFile(mode='w', delete=False) as tmp:
with open(filename) as f:
for line 1in f:
changed_1line = re.sub(r"Herm[io]+ne'", "Zaphod", line)
changed_1line = changed_1line.replace("Harry", "Hermione")
changed_1line changed_1line.replace("Zaphod", "Harry'")
tmp.write(changed_1line)
shutil.move(tmp.name, filename)

source code for change_names.1.py

https:/ /www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041/9044) 24T2 — Python Regular Expressions 26/28

Example - When Harry Met Hermione #2

For each file given as argument replace occurrences of Hermione
allowing for some misspellings with Harry and vice-versa.
Relies on Zaphod not occurring in the text.
modified text is stored in a list then file over-written
import re, sys, os
for filename 1in sys.argv[1l:]:
changed_1lines = []
with open(filename) as f:
for line 1in f:
changed_1line = re.sub(r'"Herm[io]+ne", "Zaphod", 1line)
changed_1line = changed_line.replace("Harry", "Hermione")
changed_1line = changed_line.replace("Zaphod", "Harry'")
changed_1lines.append(changed_1l1ine)
with open(filename, "w") as g:
g.write("".join(changed_lines))

source code for change_names.2.py

https:/ /www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041|9044) 24T2 — Python Regular Expressions 27/28

Example - When Harry Met Hermione #3

For each file given as argument replace occurrences of Hermione
allowing for some misspellings with Harry and vice-versa.
Relies on Zaphod not occurring in the text.
modified text is stored in a single string then file over-written
import re, sys, os
for filename 1in sys.argv[1l:]:
changed_1lines = []
with open(filename) as f:
text = f.read()
changed_text = re.sub(r"Herm[io]+ne'", "Zaphod", text)
changed_text changed_text.replace("Harry", "Hermione")
changed_text = changed_text.replace("Zaphod", "Harry'")
with open(filename, "w") as g:
g.write("".join(changed_text))

source code for change_names.3.py

https:/ /www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041|9044) 24T2 — Python Regular Expressions 28/28

