
COMP(2041|9044) 24T2 — Python Modules

https://www.cse.unsw.edu.au/~cs2041/24T2/

https://www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041|9044) 24T2 — Python Modules 1 / 22

https://www.cse.unsw.edu.au/~cs2041/24T2/
https://www.cse.unsw.edu.au/~cs2041/24T2/

Importing Code

>>> import math
>>> math.log(math.e)
1.0
>>> dir(math) # a module is itself an object
['__doc__', '__loader__', '__name__', '__package__', '__spec__', 'acos', 'acosh', 'asin', 'asinh', 'atan', 'atan2', 'atanh', 'cbrt', 'ceil', 'comb', 'copysign', 'cos', 'cosh', 'degrees', 'dist', 'e', 'erf', 'erfc', 'exp', 'exp2', 'expm1', 'fabs', 'factorial', 'floor', 'fmod', 'frexp', 'fsum', 'gamma', 'gcd', 'hypot', 'inf', 'isclose', 'isfinite', 'isinf', 'isnan', 'isqrt', 'lcm', 'ldexp', 'lgamma', 'log', 'log10', 'log1p', 'log2', 'modf', 'nan', 'nextafter', 'perm', 'pi', 'pow', 'prod', 'radians', 'remainder', 'sin', 'sinh', 'sqrt', 'tan', 'tanh', 'tau', 'trunc', 'ulp']
>>> help(math) # generated from docstrings
NAME

math
DESCRIPTION

This module provides access to the mathematical functions
defined by the C standard.

FUNCTIONS
acos(x, /)

...

https://www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041|9044) 24T2 — Python Modules 2 / 22

https://www.cse.unsw.edu.au/~cs2041/24T2/

Importing Code

Python module - a file containing function definitions and other Python.

import math # access names from math as math.name, e.g math.sin
from math import sin # access math.sin as sin
from math import sin as sine # access math.sin as sine
from math import * # access all names from math without prefix (avoid)
import math as m # access names from math as m.name, e.g m.sin

https://www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041|9044) 24T2 — Python Modules 3 / 22

https://www.cse.unsw.edu.au/~cs2041/24T2/

Finding Modules

Python module - a file containing function definitions and other Python.

import searches the current directory and a series of standard directories and zip files for modules. sys.path
contains the list (you can append directories you also want searched).

>>> import sys
>>> sys.path
['', '/usr/lib/python39.zip', '/usr/lib/python3.9', '/usr/lib/python3.9/lib-dynload',
'/usr/local/lib/python3.9/dist-packages', '/usr/lib/python3/dist-packages',
'/usr/lib/python3.9/dist-packages']

environment variable PYTHONPATH added to sys.path

$ PYTHONPATH=/home/z1234657/modules python3
...
>>> sys.path
['', '/home/z1234657/modules', '/usr/lib/python311.zip', '/usr/lib/python3.11', ...

https://www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041|9044) 24T2 — Python Modules 4 / 22

https://www.cse.unsw.edu.au/~cs2041/24T2/

Namespaces

Python modules prevent accidental name collision when using modules from many sources

Python modules can control what names are exported by default (*)

Beware - Python does not prevent deliberate access or changes to any part of a module. Even internal names (not
exported) can be be changed.

>>> import circle
>>> circle.area(radius=2)
12.566370614359172
>>> import math
>>> math.pi = 4
>>> circle.area(radius=2)
16

https://www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041|9044) 24T2 — Python Modules 5 / 22

https://www.cse.unsw.edu.au/~cs2041/24T2/

Standard Modules

Python has over 200 standard modules available via an import statement.

We have already used:

import os
import re
import sys
import subprocess

https://www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041|9044) 24T2 — Python Modules 6 / 22

https://docs.python.org/3.11/py-modindex.html
https://www.cse.unsw.edu.au/~cs2041/24T2/

Non-Standard Modules

Before wrting code, look for existing code.

There are over 500,000 packages available on PyPI.

PyPI is the [Py]thon [P]ackage [I]ndex

PyPI is a website that allows you to search for and register your own packages.

Any packages listed on the index can be installed via pip.

https://www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041|9044) 24T2 — Python Modules 7 / 22

https://pypi.org/
https://www.cse.unsw.edu.au/~cs2041/24T2/

Packages

A package is a collection of files.

These files contains the source code of, and installation instructions for, one (or more) modules.

The most common format for python packages is called a wheel.

A wheel is basically just a .zip file that contains files in a specially crafted format.

Most of the time you don’t need to worry about wheels (or other package types)
as they are automatically downloaded and installed.

https://www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041|9044) 24T2 — Python Modules 8 / 22

https://www.cse.unsw.edu.au/~cs2041/24T2/

pip

pip is the standard package manager for Python.

pip stands for [P]ip [I]nstalls [P]ackages.

pip can install any package on PyPI (and be configured to also search other repositories)

https://www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041|9044) 24T2 — Python Modules 9 / 22

https://www.cse.unsw.edu.au/~cs2041/24T2/

pip

To install a package, you can use the following command:
$ pip3 install <package_name>
or
$ python3 -m pip install <package_name>

You can also install a package from a local directory
$ pip3 install <package>.whl
or from git:
$ pip3 install git+<package_url>

pip also updates packages
$ pip3 install --upgrade <package_name>

and uninstalls packages
$ pip3 uninstall <package_name>

https://www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041|9044) 24T2 — Python Modules 10 / 22

https://www.cse.unsw.edu.au/~cs2041/24T2/

venv

By default Python installs packages system-wide, which even on a single-user system can creates conflicts:
Project A needs version X of a package and project B needs version Y of a package.

A virtual environment allows package to be installed just for the project using them.

In python a virtual environment is a directory that contains a copy of the Python interpreter.

It can be using to isolate your project from the rest of the system.

create a virtual environment:
$ python3 -m venv <new_directory_name>
then activate it
$. <new_directory_name>/bin/activate
or on Windows:
$ <new_directory_name>/Scripts/activate

Once activated, the python, python3, pip, etc commands will be run from within the virtual environment.

https://www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041|9044) 24T2 — Python Modules 11 / 22

https://www.cse.unsw.edu.au/~cs2041/24T2/

versioning

Python packages should be versioned using PEP440.

The full syntax for a PEP440 version is:

[N!]N(.N)*[{a|b|rc}N][.postN][.devN]

most commonly only the N(.N)* part is used.

This defines a verion of format X.Y.Z

Eg:

1.0.0
2.0
3.9.2
4.2
7.4.67.3.32

This is called a final release

https://www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041|9044) 24T2 — Python Modules 12 / 22

https://peps.python.org/pep-0440
https://www.cse.unsw.edu.au/~cs2041/24T2/

versioning

It is most common to use three numbers major.minor.micro

Where:
the major version is incremented when there is a forward incompatible change.
the minor version is incremented when there is a backward incompatible change.
the micro version is incremented when there is a non-breaking change (eg bug fix).

If any number isn’t specified, it is assumed to be 0.
Eg, all the following are the same:

5.7
5.7.0
5.7.0.0
5.7.0.0.0
etc

https://www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041|9044) 24T2 — Python Modules 13 / 22

https://www.cse.unsw.edu.au/~cs2041/24T2/

version specifiers

version specifiers determine which version of a package to use.
without a version specifier, any version (usually the latest) is used.

An exact version is specified by using the == operator.
A minimum version is specified by using the >= operator (or exclusively >).
A maximum version is specified by using the <= operator (or exclusively <).
A excluded version is specified by using the != operator.
A strict version is specified by using the === operator.
A compatible version is specified by using the ~= operator.

https://www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041|9044) 24T2 — Python Modules 14 / 22

https://www.cse.unsw.edu.au/~cs2041/24T2/

version specifiers == vs ===

== is used to specify an exact version.
=== is used to specify a strict version.

=== is esentialy a string comparison.
where as == takes into account semantic information.
1.0 == 1.0.0 # True
1.0 === 1.0.0 # False

https://www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041|9044) 24T2 — Python Modules 15 / 22

https://www.cse.unsw.edu.au/~cs2041/24T2/

version specifiers ~=

~= is used to specify a compatible version.

a compatible version of X.Y is >= X.Y, == X.*

That is: the minor version is greater than or equal, and the major version is the same.

https://www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041|9044) 24T2 — Python Modules 16 / 22

https://www.cse.unsw.edu.au/~cs2041/24T2/

version specifiers

multiple version specifiers can be used to restrict the version of a package.

~= 3.1.0, < 3.1.7, != 3.1.3

3.1.0
3.1.1
3.1.2
3.1.4
3.1.5
3.1.6

https://www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041|9044) 24T2 — Python Modules 17 / 22

https://www.cse.unsw.edu.au/~cs2041/24T2/

version specifiers

version specifiers can be used with pip.

$ python3 -m pip install 'regex~=2022.7.0,>2022.7.23,!=2022.7.24'

by default, pip will install the latest version of a package.

https://www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041|9044) 24T2 — Python Modules 18 / 22

https://www.cse.unsw.edu.au/~cs2041/24T2/

requirements.txt

It can be very annoying to keep track of all the packages you need to install.

So instead, we can put them in a file, conventionally called requirements.txt.

The requirements.txt file is a simple text file that contains a list of package to install.

These can either not have a version specifier.
Ie. just a list of package.

Or they can have a version specifiers.
Ie. when you want to replicate an environment.

https://www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041|9044) 24T2 — Python Modules 19 / 22

https://www.cse.unsw.edu.au/~cs2041/24T2/

requirements.txt

requests
beautifulsoup4
regex

requests ~= 2.0.0, <= 2.25, != 2.26.0, != 2.27.1
beautifulsoup4 >= 5.4, < 5.10
regex ~= 2022.7.0, > 2022.7.23, != 2022.7.24

https://www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041|9044) 24T2 — Python Modules 20 / 22

https://www.cse.unsw.edu.au/~cs2041/24T2/

requirements.txt

`pip` can install package from a `requirements.txt` file directly.
$ pip3 install -r requirements.txt

`pip` can generate a `requirements.txt` file with version specifiers.
$ pip3 freeze > requirements.txt

pip freeze gives you a list of all packages and their versions.

Even those that were not directly installed (indirect requirements).

This can clutter up your requirements.txt file.

So pip also supports a constraints file.

https://www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041|9044) 24T2 — Python Modules 21 / 22

https://www.cse.unsw.edu.au/~cs2041/24T2/

constraints.txt

constraints.txt works exactly like requirements.txt
except that a package in constraints.txt will only be installed if they are also in requirements.txt.

$ pip3 install -r requirements.txt -c constraints.txt
$ cat requirements.txt
requests
beautifulsoup4
regex
$ cat constraints.txt
beautifulsoup4==4.11.1
certifi==2022.6.15
charset-normalizer==2.1.0
idna==3.3
regex==2022.7.25
requests==2.28.1
soupsieve==2.3.2.post1
urllib3==1.26.11

https://www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041|9044) 24T2 — Python Modules 22 / 22

https://www.cse.unsw.edu.au/~cs2041/24T2/

