
COMP(2041|9044) 24T2 — Make

https://www.cse.unsw.edu.au/~cs2041/24T2/

https://www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041|9044) 24T2 — Make 1 / 19

https://www.cse.unsw.edu.au/~cs2041/24T2/
https://www.cse.unsw.edu.au/~cs2041/24T2/

Building Software Systems

Even small software systems need to to use tools to control builds.

Many, many tools available

Tools popular with developers often changing, and specific to platform/language.

We’ll look at a classic tool make which is still widely used e.g. Linux kernel

If you want current alternatives: cmake + ninja

But you should know make

https://www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041|9044) 24T2 — Make 2 / 19

https://www.cse.unsw.edu.au/~cs2041/24T2/

make

make allows youto

document intra-module dependencies

automatically track of changes

make works from a file called Makefile (or makefile)

A Makefile contains a sequence of rules like:

target : source1 source2 ...
commands to create target from sources

Beware: each command is preceded by a single tab character.

Take care using cut-and-paste with Makefiles

https://www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041|9044) 24T2 — Make 3 / 19

https://www.cse.unsw.edu.au/~cs2041/24T2/

Dependencies

The make command is based on the notion of dependencies.

Each rule in a Makefile describes:

dependencies between each target and its sources

commands to build the target from its sources

Make decides that a target needs to be rebuilt if

it is older than any of its sources (based on file modification times)

https://www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041|9044) 24T2 — Make 4 / 19

https://www.cse.unsw.edu.au/~cs2041/24T2/

Building Multi-module C Program with incremental compilation

$ gcc -c -g -Wall world.c
$ gcc -c -g -Wall graphics.c
$ gcc -c -g -Wall main.c
$ gcc -Wall -o game main.o world.o graphics.o

https://www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041|9044) 24T2 — Make 5 / 19

https://www.cse.unsw.edu.au/~cs2041/24T2/

Building Large C Program

For systems like Linux kernel with 50,000+ files building is either

inefficient (recompile everything after any change)

error-prone (recompile just what’s changed + dependents)

module relationships easy to overlook
(e.g. graphics.c depends on a typedef in world.h)

you may not know when a module changes
(e.g. you work on graphics.c, others work on world.c)

https://www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041|9044) 24T2 — Make 6 / 19

https://www.cse.unsw.edu.au/~cs2041/24T2/

Example Makefile #1

A Makefile for the earlier example program:

game : main.o graphics.o world.o
gcc -Wall -o game main.o graphics.o world.o

main.o : main.c graphics.h world.h
gcc -c main.c

graphics.o : graphics.c world.h
gcc -c -g -Wall graphics.c

world.o : world.c
gcc -c -g -Wall world.c

https://www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041|9044) 24T2 — Make 7 / 19

https://www.cse.unsw.edu.au/~cs2041/24T2/

Using Make
$ make
gcc -c main.c
gcc -c graphics.c
gcc -c world.c
gcc -o game main.o graphics.o world.o
$ make
make: 'game' is up to date.
$ vi graphics.h # change graphics.h
$ make
gcc -c main.c
gcc -o game main.o graphics.o world.o
$ vi world.h # change world.h
$ make
make: 'game' is up to date.
$ make
gcc -c main.c
gcc -c graphics.c
gcc -c world.c
gcc -o game main.o graphics.o world.o

https://www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041|9044) 24T2 — Make 8 / 19

https://www.cse.unsw.edu.au/~cs2041/24T2/

Parsing a Makefile in Python

def parse_makefile(makefile_name):
"""return dict mapping makefile targets to (dependencies, build commands) tuple"""
rules = collections.OrderedDict()
with open(makefile_name, encoding="utf-8") as f:

while line := f.readline():
if not (m := re.match(r"^(\S+)\s*:\s*(.*)", line)):

continue
target = m.group(1)
dependencies = m.group(2).split()
build_commands = []
while (line := f.readline()).startswith("\t"):

build_commands.append(line.strip())
rules[target] = (dependencies, build_commands)

return rules
source code for make.v1.py

https://www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041|9044) 24T2 — Make 9 / 19

https://cgi.cse.unsw.edu.au/~cs2041/24T2//topic/make/code/make.v1.py
https://www.cse.unsw.edu.au/~cs2041/24T2/

How make Works

The make command behaves as:

def make(target, dependencies, commands):
Stage 1
for each D in dependencies:

rebuild D if it needs rebuilding
Stage 2
if target does not exist or any dependency is newer than target:

rebuild target
run commands

https://www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041|9044) 24T2 — Make 10 / 19

https://www.cse.unsw.edu.au/~cs2041/24T2/

Building everything whether needed or not - Implementation in Python

def build(target, rules, dryrun=False):
"""recursively check dependencies and run commands to build target"""
(dependencies, build_commands) = rules.get(target, ([], []))
if not build_commands and not os.path.exists(target):

print("*** No rule to make target", target)
sys.exit(1)

for command in build_commands:
print(command)
if not dryrun:

subprocess.run(command, shell=True)
source code for make.v0.py

https://www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041|9044) 24T2 — Make 11 / 19

https://cgi.cse.unsw.edu.au/~cs2041/24T2//topic/make/code/make.v0.py
https://www.cse.unsw.edu.au/~cs2041/24T2/

How make builds what is needed - Implementation in Python

def build(target, rules, dryrun=False):
"""recursively check dependencies and, if needed, run commands to build target"""
(dependencies, build_commands) = rules.get(target, ([], []))
build_needed = not os.path.exists(target)
for d in dependencies:

build(d, rules, dryrun)
build_needed = build_needed or os.path.getmtime(d) > os.path.getmtime(target)

if not build_needed:
return

if not build_commands and not os.path.exists(target):
print("*** No rule to make target", target)
sys.exit(1)

for command in build_commands:
print(command)
if not dryrun:

subprocess.run(command, shell=True)
source code for make.v1.py

https://www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041|9044) 24T2 — Make 12 / 19

https://cgi.cse.unsw.edu.au/~cs2041/24T2//topic/make/code/make.v1.py
https://www.cse.unsw.edu.au/~cs2041/24T2/

Make command-line Arguments

If make arguments are targets, build just those targets:

$ make world.o
$ make clean

If no args, build first target in the Makefile.

The -n option instructs make

to print what it would do to create targets
but don’t execute any of the commands

A different makefile name can be optionally specified with -f

to print what it would do to create targets
but don’t execute any of the commands

https://www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041|9044) 24T2 — Make 13 / 19

https://www.cse.unsw.edu.au/~cs2041/24T2/

Command-line Arguments - Implementation in Python

def main():
"""determine targets to build and build them"""
parser = argparse.ArgumentParser()
parser.add_argument("-f", "--makefile", default="Makefile")
parser.add_argument("-n", "--dryrun", action="store_true")
parser.add_argument("build_targets", nargs="*")
args = parser.parse_args()
rules = parse_makefile(args.makefile)
if not target is specified use first target in Makefile (if any)
build_targets = args.build_targets or list(rules.keys())[:1]
for target in build_targets:

build(target, rules, args.dryrun)
source code for make.v1.py

https://www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041|9044) 24T2 — Make 14 / 19

https://cgi.cse.unsw.edu.au/~cs2041/24T2//topic/make/code/make.v1.py
https://www.cse.unsw.edu.au/~cs2041/24T2/

Makefile - variables & comments

string-valued variables/macros
CC = gcc
CFLAGS = -g
LDFLAGS = -lm
BINS = main.o graphics.o world.o

implicit commands, determined by suffix
main.o : main.c graphics.h world.h
graphics.o : graphics.c world.h
world.o : world.c

pseduo-targets
clean :

rm -f game main.o graphics.o world.o
or ... rm -f game $(BINS)

https://www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041|9044) 24T2 — Make 15 / 19

https://www.cse.unsw.edu.au/~cs2041/24T2/

Parsing Variables and comments in Python

variables = {}
with open(makefile_name, encoding="utf-8") as f:

while line := f.readline():
remove any comment
line = re.sub(r"#.*", "", line)
check for variable definition
if m := re.match(r"^\s*(\S+)\s*=\s*(.*)", line):

variables[m.group(1)] = m.group(2)
continue

line = replace_variables(line, variables)
source code for make.v2.py

def replace_variables(line, variables):
"""return line with occurances of $(variable) replaced by variable's value"""
return re.sub(r"\$\((.*?)\)", lambda m: variables.get(m.group(1), ""), line)

source code for make.v2.py

https://www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041|9044) 24T2 — Make 16 / 19

https://cgi.cse.unsw.edu.au/~cs2041/24T2//topic/make/code/make.v2.py
https://cgi.cse.unsw.edu.au/~cs2041/24T2//topic/make/code/make.v2.py
https://www.cse.unsw.edu.au/~cs2041/24T2/

Compiling Python from Sources with make

$ curl -sO https://www.python.org/ftp/python/3.12.4/Python-3.12.4.tar.xz
$ tar xf Python-3.12.4.tar.xz
$ cd Python-3.12.4
$ find . -type f|wc -l
4498
$ find . -type f|sed 's/.*\.//'|sort|uniq -c|sort
...
$./configure
...
creating Makefile
$ make
gcc ...
...
$./python
Python 3.12.2 (main, Apr 9 2024, 09:28:45) [GCC 13.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

https://www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041|9044) 24T2 — Make 17 / 19

https://www.cse.unsw.edu.au/~cs2041/24T2/

make in parallel

The -jN option instructs make to build dependencies in parallel using up to N parallel processes

For example an approximately 7x real-time speedup building Python:

$ make clean
$ time make -j16
...
real 0m13.556s
user 1m55.979s
sys 0m7.663s
$ make clean
$ time make
real 1m19.566s
user 1m15.477s
sys 0m4.032s

https://www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041|9044) 24T2 — Make 18 / 19

https://www.cse.unsw.edu.au/~cs2041/24T2/

Useful other Makefiles functionalities

multiple targets with same sources
stats1 stats2 : data1 data2 data3

perl analyse1.pl data1 data2 data3 > stats1
perl analyse2.pl data1 data2 data3 > stats2

creating subsystems via make
parser:

cd parser && $(MAKE)
assumes parser directory has own Makefile

https://www.cse.unsw.edu.au/~cs2041/24T2/ COMP(2041|9044) 24T2 — Make 19 / 19

https://www.cse.unsw.edu.au/~cs2041/24T2/

