
COMPUTING PRACTICES

Edgar H. Sibley
Panel Chair

The splay-prefix algorithm is one of the simplest and fastest adaptive data
compression algorithms based on the use of a prefix code. The data
structures used in the splay-prefix algorithm can also be applied to
arithmetic data compression. Applications of these algorithms to encryption
and image processing are suggested.

APPLICATIOIU OF SPLAY TREES TO
DATA COMPRESSION

DOUGLAS W. JONES

Data compression algorithms can improve the effi-
ciency with which data is stored or transmitted by
reducing the amount of redundant data. A compression
algorithm takes a source text as input and produces a
corresponding compressed text, while an expansion
algorithm takes the compressed text as input and pro-
duces the original source text as output.’ Most
compression algorithms view the source text as consist-
ing of a sequence of letters selected from an alphabet.

The redundancy of a representation of a string S is
L(S)-H(S), where L(S) is the length of the representa-
tion, in bits, and H(S) is its entropy-a measure of
information content, also expressed in bits. No
compression algorithm can compress a string to fewer
bits than its entropy without information loss. If the
source text is drawn one letter at a time from a random
source using alphabet A, the entropy is given by:

fw) = C(S) .z& p(c) log* --&

where C(S) is the number of letters in the string, and
p(c) is the static probability of obtaining any particular
letter c. If the frequency of each letter c in the string S
is used as an estimate of p(c), H(S) is called the self-
entropy of S. In this paper, I&(S) will be used to signify
the self-entropy of a string, computed under the
assumption that it was produced by a static source.

‘Such algorithms are noiseless; in this paper. approximate or noisy algorithms
will not be considered.

0 1968 ACM OOOl-0782/88/0800-0996 $1.50

Static probability models do not provide very good
characterizations of many sources. For example, in
English text, the letter u is less common than e, so a
static probability model would incorrectly predict that
9e would be more common than 9~. Markov probability
models allow very good characterization of such
sources. A Markov source has many states, and under-
goes a random state change as each letter is drawn.
Each state is associated with a probability distribution
that determines the next state and the next letter pro-
duced. When a Markov source producing English-like
text emits a 9, it would enter a state in which u is the
most likely output. Further discussion of emropy, static
sources, and Markov sources can be found in most
books on information theory [Z].

Although there are a number of ad hoc approaches to
data compression, for example, run-length e.ncoding,
there are also a number of systematic approaches. Huff-
man codes are among the oldest of the systematic
approaches to data compression. Adaptive Huffman
compression algorithms require the use of tree balanc-
ing schemes which can also be applied to the data
structures required by adaptive arithmetic compression
algorithms. There is sufficient similarity between the
balancing objectives of these schemes and tb.ose
achieved by splay trees to try splay trees in both con-
texts.

Splay trees are usually considered forms of lexico-
graphically ordered binary search trees, but -the trees
used in data compression need not have a static order.
The removal of the ordering constraint allows the basic
splaying operation to be considerably simplified. The

996 Communications of the ACM August 1988 Volume 3 1 Number 8

Computing Practices

resulting algorithms are extremely fast and compact.
When applied to Huffman codes, splaying leads to a
locally adaptive compression algorithm that is remarka-
bly simple as well as fast, although it does not achieve
optimal compression. When applied to arithmetic
codes, the result is near optimal in compression and
asymptotically optimal in time.

PREFIX CODES
The most widely studied data compression algorithms
are probably those based on Huffman codes. In a Huff-
man code, each source letter is represented in the com-
pressed text by a variable length code. Common source
letters are represented by short codes, while uncom-
mon ones are represented by long codes. The codes
used in the compressed text must obey the prefix prop-
erty, that is, a code used in the compressed text may
not be a prefix of any other code.

Prefix codes may be thought of as trees, with each
leaf of the tree associated with one letter in the source
alphabet. Figure 1 illustrates a prefix code tree for a
4 letter alphabet. The prefix code for a letter can be
read by following the path from the root of the tree to
the letter and associating a 0 with each left branch
followed and a 1 with each right branch followed. The
code tree for a Huffman code is a weight balanced tree,
where each leaf is weighted with the letter frequency
and internal nodes have no intrinsic weight. The exam-
ple tree would be optimal if the frequencies of the let-
ters A, B, C, and D were 0.125, 0.125, 0.25, and 0.5,
respectively.

1 A
A

D
1

A

C
1

A B

A = 000

B = 001

c = 01

D=l

FIGURE 1. A Tree Representation of a Prefix Code

Conventional Huffman codes require either prior
knowledge of the letter frequencies or two passes
through the data to be compressed-one to obtain the
letter frequencies, and one to perform the actual
compression. In the latter case, the letter frequencies
must be included with the compressed text in order
to allow for later expansion. Adaptive compression
algorithms operate in one pass. In adaptive Huffman
codes, the code used for each letter in the source
text being compressed is based on the frequencies of
all letters up to but not including that letter. The basis
for efficient implementation of adaptive Huffman codes
was established by Gallager [3]; Knuth published
a practical version of an adaptive algorithm [5]; and

Vitter has developed an optimal adaptive Huffman algo-
rithm [lo].

Vitter’s optimal adaptive Huffman code always comes
within one bit per source letter of the optimal static
Huffman code, and it is usually within a few percent
of H,. Furthermore, static Huffman codes are always
within one bit per source letter of H, (Huffman codes
achieve this limit only when, for all letters, p(c) = 2-‘).
These same bounds can be applied to Markov sources if
a different (static or adaptive) Huffman tree is used for
each source state inferred from the source text. There
are compression algorithms that can improve on these
bounds. The Ziv-Lempel algorithm, for example,
assigns fixed length words in the compressed text to
varying length strings from the source [ll], while arith-
metic compression can, in effect, utilize fractional bits
in the encoding of source letters [12].

Applying Splaying to Prefix Codes
Splay trees were first described in 1983 [8], and more
details were presented in 1985 [9]. Splay trees were
originally intended as a form of self-balancing binary
search trees, but they have also been shown to be
among the fastest known priority queue implementa-
tions [4]. When a node in a splay tree is accessed, the
tree is splayed: that is, the accessed node becomes the
root, and all nodes to the left of it form a new left
subtree, while all nodes to the right form a new right
subtree. Splaying is accomplished by following the path
from the old root to the target node, making only local
changes along the way, so the cost of splaying is propor-
tional to the length of the path followed.

Tarjan and Sleator [9] showed that splay trees are
statically optimal. In other words, if the keys of the
nodes to be accessed are drawn from a static probability
distribution, the access speeds of a splay tree and of a
statically balanced tree optimized for that distribution
should differ by a constant factor when amortized over
a sufficiently long series of accesses. Since a Huffman
tree is an example of a statically balanced tree, this
suggests that splaying should be applicable to data
compression, and that the compressed code resulting
from a splayed prefix code tree should be within a
constant factor of the size achievable by using a Huff-
man code.

As originally described, splaying applies to trees
where data is stored in the internal nodes, not the
leaves. Prefix code trees carry all of their data in the
leaves, with nothing in the internal nodes. There is a
variant of splaying, however, called semi-splaying,
which is applicable to prefix code trees. In semi-
splaying, the target node is not moved to the root, nor
are its children modified; instead, the path from the
root to the target is simply shortened by a factor of two.
Semi-splaying has been shown to achieve the same the-
oretical bounds as splaying, within a constant factor.

Both splaying and semi-splaying are complicated in a
lexicographic tree when a zig-zag path is followed in
the interior of the tree, but they are easy when the path
to the target node stays entirely on the left or right edge

August 1988 Volume 31 Number 8 Communications of the ACM 997

Computing Practices

of the tree (called the zig-zig case in [8] and [9]). This
simple case is illustrated in Figure 2. The effect of semi-
splalying along the path from the root (node zu) to leaf
node A is to rotate each successive pair of internal
nodes so that the path length from the root to the leaf
node is halved. In the process, the nodes in each pair
that were farthest from the root stay on the new path
(nodes x and z), while those that were closest move off
the path (nodes w and y).

prefix code for the target leaf is all zeros and the target
leaf is the leftmost leaf. In Figure 3, the tree has been
twisted to allow easy semi-splaying around leaf C. For-
tunately, this change does not disturb any of the per-
formance bounds that have been proven for semi-
splaying. The proof of this follows trivially since the
potential function used in [9] to prove these perform-
ance bounds does not depend on the order of the sub-
trees of a node.

FIGURE 2. Semi-Splaying Around the Leftmost Leaf in a Code Tree

While the semi-splaying operation preserves the lexi-
cographic ordering of all nodes in the tree, this is not
important in a prefix code tree. With prefix codes, all
that matters is that the tree used by the compression
routine to compress any letter of the source text exactly
match the tree used by the expansion routine to
expand that letter. Any transformation of the tree is
allowed between successive letters, as long as both rou-
tines perform the same transformations in the same
order.

The lack of a lexicographic ordering constraint allows
a great simplification to the semi-splaying operation by
eliminating the need to consider the zig-zag case. This
can be done by inspecting the nodes on the path from
the root to the target leaf and exchanging those which
are right children with their siblings. This will be
called twisting the tree. After this modification, the new

B 0 11

/ \
C D

A second simplification arises when we consider that
not only can left and right siblings be exchanged at
will, but all internal nodes in the prefix cod.e tree are
anonymous and carry no information. This allows the
rotations used in semi-splaying to be replacled by opera-
tions requiring the exchange of only two links in the
tree; we will call these operations semi-rotations. Fig-
ure 4 shows a semi-rotation. A semi-rotation has the
same effect on the distances of each leaf from the root
as a full rotation, but it destroys the lexicographic
ordering and involves cutting and grafting only 2
branches of the tree, while a full rotation involves cuts
and grafts on 4 branches.

There is actually no need to twist the tree prior to
applying semi-rotations. Instead, the semi-rotations can
be applied along the path from the root to the target
leaf as if that path were the left-most path. For exam-

c/i\ A

1

A

B

C D

FIGURE 3. Twisting About C to Eliminate the Need for Zig-Zag Semi-Splaying

998 Communications of the ACM August 1988 Volume 31 Number 8

Computing Practices

/ \ / \
A B C B

FIGURE 4. Semi-Rotation About A

pie, the tree shown in Figure 3 can be directly splayed
as shown in Figure 5. In this example, the tree is semi-
splayed around leaf C using semi-rotations at each pair
of internal nodes along the path from C to the root.
Note that the effect of this transformation on the tree
puts each leaf node at the same distance from the root
as it would have been if the tree was first twisted so
that C was the left-most leaf, and then semi-splayed in
the conventional way. The trees that result differ only
in the labeling of their internal nodes and in the
exchange of children of some of the internal nodes.

It should be noted that there are two ways to semi-
splay a tree around a node; these differ when the
path from that node to the root has an odd length.
In this case, a node on the path cannot be paired
to participate in a rotation or semi-rotation. If pairs
are constructed from the bottom up, the root may be
left out, while, if constructed from the top down,
the last internal node on the path may be left out.
The presentation given here will focus on the
bottom-up approach.

access to two children and the parent of that node. The
easiest way to allow for this is to use three pointers per
node, a left pointer, a right pointer, and an up pointer.
The triangular representation discussed in [9] was used
with only two pointers per node,’ but the savings in
storage would be offset by an increase in run-time and
code complexity. The basic data structures required
are:

const
maxchar = . . . (maximum source character code);
succmax = maxchar + 1;
twicemax = 2 X maxchar + 1;
root = 1;

type
codetype = 0 . . maxchar (source character code range);
bit = 0 . . 1;
upindex = 1 . . maxchar;
downindex = 1 . . twicemax;

var
left, right: array [upindex] of downindex;
up: array [downindex] of upindex;

The index types upindex and downindex are used for
pointers up and down in the code tree. Down pointers
must be able to point to either leaves or internal nodes,
while up pointers only reference internal nodes. Inter-
nal nodes will be stored below leaves, so index values
between 1 and maxchar (inclusive) will be used to re-
ference internal nodes, while index values between
maxchar + 1 and (2 X maxchar) + 1 (inclusive) will be

A E B D

FIGURE 5. Semi-Splaying About C Using Semi-Rotations

The Splay-Prefix Algorithm
The code presented here will be in the style of Pascal,
with constant valued expressions substituted for con-
stants where that improves readability. The data struc-
tures required by this code will be constructed using
only arrays, even though the logical structure might be
more clearly expressed using records and pointers. This
is in keeping with the form of presentation used in
earlier work in this area [5, lo]. It allows easy expres-
sion in older but widely used languages such as For-
tran, and it allows compact pointer representations.

Each internal node in the code tree must allow

used to reference leaves. Note that the root of the tree
always has an undefined parent, and is always stored at
location 1. The letter corresponding to a leaf can be
computed from the index of that leaf by subtracting
maxchar + 1.

If the end of a source document can be inferred from
context, the source alphabet can be encoded directly in
the range codetype, and the largest code allowed in a

‘In [9], an extra bit was needed per node in the triangular representation to
distinguish left only children from right only children; since a prefix code tree
is a complete binary tree. this bit is not needed here.

August 1988 Volume 31 Number 8 Communications of the ACM 999

Computing Pmctices

source document can be maxcha~. If this is not the case,
the range codetype must be expanded by one to include
a special end-of-file character; this means that maxchnr
will be one greater than the largest character represen-
tation.

The following routine will initialize the code tree.
This builds a balanced code tree, but in fact, any initial
tree would suffice as long as the same initial tree is
used for both compression and expansion.

procedure initialize;
var

i: downindex;
j: upindex;

begin
for i := 2 to twicemax
do up[i] := i div 2;
for j := 1 to maxchar do begin

left[j] := 2 X j;
right[j] := 2 X j + 1;

end;
end {initialize);

After each letter is compressed or expanded, using
the current version of the code tree, the tree must be
splayed around the code for that letter. The following
procedure does this, using bottom-up splaying.

procedure splay(plain: codetype):
var

a, b: downindex (children of nodes to semi-rotate);
c, d: upindex (pair of nodes to semi-rotate);

begin
a := plain + succtnax;
repeat {walk up the tree semi-rotating pairs)

c := up[a];
if c # root then begin {a pair remains)

d := up[c];

(exchange children of pair)
b := left[d];
if c = b then begin

b := right[d];
right[d] := a;

endelsebegin
left[d] := a;

end;
if a = left[c] then begin

left[c] := b;
endelsebegin

right[c] := b;
end;

up[a] := d;
up[b] := c;
a := d;

end else begin (handle odd node at end)
a := c;

end;
until a = Toot;

end {splay];

To c:ompress a letter from the source text, the letter
must be encoded using the code tree, and then trans-

1000 Communications of the ACM

mitted. Since encoding is done by following a path from
a leaf to the root of the tree, the code bits are produced
in the reverse order from the order in which they must
be transmitted. To correct this, the compress routine
uses a local stack from which bits are popped one at a
time and passed to the transmit routine.

procedure compress(plain: codetype);
var

sp: 1 . . succmax;
stack: array[upindex] of bit;
a: downindex;

begin
(encode)
a := plain + succmax;
sp := 1;
repeat (walk up the tree pushing bits)

stack[sp] := ord(right[up[a]] = a);
sp := sp + 1;
a := up[a];

until a = root;
repeat (transmit)

sp := sp - 1;
transmit(stack[sp]);

until sp = 1;
splay(plain);

end (compress];

To expand a letter, successive bits must be read
from the compressed text using the receive function.
Each bit determines one step on the path from the root
of the tree to the leaf representing the expanded
letter.

function expand: codetype;
var

a: downindex;
begin

a := root;
repeat (once for each bit on the path)

if receive = 0
then a := left[u]
else a := right[a];

unt i 1 a > maxchar;
spZay(a - succmax);
uncompress := a - succmax;

end (expand};

The main programs for compression and expansion
are trivial, consisting of a call to the initialize routine,
followed by successive calls to compress or expand for
each letter processed.

Performance of the Splay-Prefix Algorithm
In practice, splay-tree based prefix codes are not opti-
mal, but they have some useful properties. Primary
among these are speed, simple code, and compact data
structures. The splay-prefix algorithm requi.res only
3 arrays, while Vitter’s Algorithm A for computing an
optimal adaptive prefix code requires 11 arrays [lo].
Assuming that the source character set uses 8 bits per
character and that end-of-file must be signalled by a

August 1988 Volume 31 Number 8

character outside the a bit range, maxchar = 256 and all
array entries can be directly represented in either 9 or
10 bits (two bytes on most machines).3 The static stor-
age requirements for the splay-prefix algorithm are
about 9.7k bits (or 2k bytes on most machines). A simi-
lar approach to storing the arrays used by Algorithm A
requires about 57k bits (or lOk bytes on most
machines).

Other commonly used compression algorithms
require even more memory; for example, Welch recom-
mends using a 4096 entry hash table with 20 bits per
entry to implement Ziv-Lempel compression [ll], for a
total of almost 82k bits (or 12k bytes on most
machines). The widely used compress command on
Berkeley UNIX systems uses a Ziv-Lempel code based
on a table of up to 64k entries of at least 24 bits each,
for a total of 1572k bits (196k bytes on most machines).

Table I shows how Vitter’s Algorithm A and the
splay-prefix algorithm performed when used on a vari-
ety of test data. In all cases, an alphabet of 256 distinct
letters was used, augmented with a reserved end-of-file
mark. For all files, compressed output of Algorithm A
was within 5 percent of H,, and was usually within
2 percent. For all files, the compressed output of the
splay algorithm was never more than 20 percent larger
than H,, and was sometimes much smaller.

The test data includes a C program (file l), two Pascal
programs (files 2, 3), and an early draft of this text (file
4). All 4 text files use the ASCII character set, with tabs
replacing most groups of a leading blanks, and few if
any trailing blanks. For all of these files, Algorithm A
produced results that were about 60 percent of the orig-
inal size, and the splay algorithm produced results that
were about 70 percent of the original size. This was the
worst compression performance observed for the splay-
prefix algorithm relative to Algorithm A.

Two M68000 object files were compressed (files 5, 6),
as well as a file of TP,X output in DVI format (file 7).
These files have less redundancy than the text files,

3 Changes to the coding standards allowing array indices to run from o to 255
instead of I to 256 would reduce the storage requirements of both the splay-
prefix algorithm and Algorithm A.

Computing Practices

and thus, neither compression method was able to
reduce their size as effectively. Nonetheless, both
compression methods managed to usefully compress
the data, and the splay algorithm produced results that
were about 10 percent larger than those produced by
Algorithm A.

Three digitized images of human faces were com-
pressed (files 8, 9, 10); these have varying numbers of
pixels, but all were digitized using 16 grey levels, and
stored one pixel per byte. For these files, Algorithm A
produced results that were about 40 percent of the orig-
inal size, while the splay-prefix algorithm produced
results only 25 percent of the original size, or about
60 percent of H,. At first, this may appear to be impos-
sible, since H, is an information theoretic limit, but the
splay-prefix algorithm passes this limit by exploiting
the Markov characteristics of some sources.

The final 3 files were artificially created to explore
the class of sources where the splay-prefix algorithm
excels (files 11, 12, 13); all contain equal numbers of
each of the 256 character codes, so H, is the same for
all three, and is equal to the length of the string in bits.
In file 11, the entire character set is repeated 64 times;
the splay-prefix algorithm performed marginally
better than H,. In file 12, the character set is repeated
64 times but the bits of each character are reversed;
this prevents splaying from improving on H,. The key
difference between these two is that in file 11, succes-
sive characters are likely to come from the same sub-
tree of the code tree, while in file 12, this is unlikely. In
file 13, the character set is repeated 7 times, but in each
copy of the character set after the second, each charac-
ter is repeated twice as many times as in the previous
copy; the file ends with a run of 32 a’s followed by a
run of 32 b’s, and so forth. Here, the splay-prefix algo-
rithm was able to exploit long runs of repeated charac-
ters, so the result was only 25 percent of H,; on the
other hand, algorithm A never found any character to
be more than twice as common as any other, so equal
length codes were used throughout.

When a character is repeated, the splay-prefix algo-
rithm assigns successively shorter codes to each repeti-
tion; after at most log2 n repetitions of a letter from an

file

1
2
3
4

5
6
7

8
9

10

11
12
13

type

C
Pascal
Pascal

text
object
object
.DVI

images

test

TABLE 1. Results for Algorithm A and the Splay-Prefix Algorithm

bytes bits --,“:I~ ,@g, .: ‘~ ,: &,i$ts: !* -.g : ,“- . ..splayt)itS

12090 96720 56860.2 60176 66344
3632 29056 16862.0 17544 19608
9720 77760 45788.6 46704 53552

55131 441048 270814.9 274032 309496

32207 257656 193665.3 196760 206280
41456 331648 249270.7 252312 263744
41881 335048 257542.3 260592 282304

46187 369496 147296.7 149056 94936
60141 481128 183023.7 186032 115576

144981 1159848 506817.1 515304 262376

16385 131080 131080.2 132552 122296
16385 131080 131080.2 132592 144544
16385 131080 131080.2 132552 32424

August 1988 Volume 31 Number 8 Communications of the ACM 1001

Computing Practices

n letter alphabet, splaying will assign a 1 bit code to
that letter. This explains the excellent results of splay-
ing applied to file 13. Furthermore, if letters from one
subtree of the code tree are repeatedly referenced,
splaying will shorten the codes for all letters in that
subtree. This explains why splaying performed well
when applied to file 11.

In the image data, it was rare for more than a few
consecutive pixels of any scan line to have the same
intensity, but within each textured region of the image,
a different static probability distribution could be used
to describe the distribution of intensities. As the splay-
prefix algorithm compresses successive pixels in a scan
line, it assigns short codes to the pixel intensities which
are common in the current context. When it crosses
from one textured region to another, short codes are
quickly assigned to intensities common in the new re-
gion, while the codes for now-unused intensities slowly
grow longer. As a result of this behavior, the splay-
prefix algorithm is locally adaptive. The splay-prefix
algorithm and the similar locally adaptive algorithms
should be able to achieve reasonable compression
results for any Markov source that stays in each state
long enough for the algorithm to adapt to that state.

Other locally adaptive data compression algorithms
have been proposed by Knuth [5] and by Bentley, et al.
[l]. Knuth proposed a locally adaptive Huffman algo-
rithm where the code used for any letter was deter-
mined by the n most recent letters; this approach is
computationally slightly more difficult than simple
adaptive Huffman algorithms, but the appropriate value
of n depends on the frequency of state changes in the
source. Bentley, et al. propose using the move-to-front
heuristic to organize a list of recently used words
(assuming that the source text has lexical structure] in
conjunction with a locally adaptive Huffman code for
encoding slot numbers in the list. This locally adaptive
Huffman code involves periodically reducing the
weights on all letters in the Huffman tree by multi-
plying by a constant less than one. A similar approach
is used [12] in the context of arithmetic codes. In
many respects, the periodic reduction of the weights
of all letters in an adaptive Huffman or arithmetic
code should result in adaptive behavior very similar
to that of the splay compression algorithm de-
scribed here.

The small data structures required by the splay-
prefix algorithm allow Markov models to be con-
structed with a relatively large number of states; for
example, models with more than 96 states can be rep-
resented in the 196k byte space used by the compress
command under Berkeley UNIX. Furthermore, the code
presented here can be converted to a Markov model by
adding one variable, state, and by adding a state dimen-
sion to each of the 3 arrays representing the code tree.
The c:ode trees for all of the states can be identically
initialized, and one statement needs to be added at the
end of the splay routine to change the state based on
the previous letter (or in more complex models, on the
previous letter and the previous state).

For a system with n states, and where the previous
letter was c, it is easy to use the value c mod n to
determine the next state. This Markov model blindly
lumps every nth letter in the alphabet into one state.
Values of n varying from 1 to 64 were tried in com-
pressing a text file, an object code file, and a digitized
image (file 8). The results of these experiments are pre-
sented in Figure 6. For object code, a 64 sta.te model
was sufficient to outperform the Ziv-Lempel based
compress command and a 4 state model was sufficient
to pass H,. For the text file, a 64 state model came close
to the performance of the compress command, and an
8 state model was sufficient to pass H,. For the image
data [file 8), a 16 state model was sufficient to outper-
form the compress command and all models signifi-
cantly outperformed H,. Markov models with fewer
than 8 states were less effective than a simple static
model applied to the image data, with the worst case
being 3 states. This is because the use of a Markov
model interferes with the locally adaptive behavior of
the splay-prefix algorithm.

H, UNIX compress

. Object
0 Text
0 Image

,,,. ,
248 1’8 3’2 $4

States in Markov model

FIGURE 6. Performance of the Splay-Prefix Algorithm with
a Markov Model

Both Algorithm A and the splay-prefix algorithm
have run-times proportional to the size of the output,
and in both cases, the output is of worst-case length
O(H,); thus both should run in worst-case time O(HJ.
The constant factors differ because the splay-prefix
algorithm performs less work per bit of output, but
produces more bits of output in the worst case. For the
13 files in Table I, Algorithm A produced output at an
average rate of 3k bits per second, while the splay-
prefix algorithm produced output at better than 4k bits
per second; thus, the splay algorithm was always signif-
icantly faster. These times were measured on an
M68616 based Hewlett Packard Series 266 91836CU
workstation under the HP-UX operating system, with
both algorithms written in Pascal to similar coding
standards.

Communications of the ACM August 1988 Volume .31 Number 8

Computing Practices

ARITHMETIC CODES
The compressed text resulting from arithmetic data
compression is viewed as a binary fraction, and each
letter in the alphabet is associated with a different sub-
range of the half open interval [0, 1). The source text
can be viewed as a textual representation of this frac-
tion using a number system where each letter in the
alphabet is used as a digit, but the range of values
associated with each letter has a width depending on
the frequency of that letter. The first letter of the com-
pressed text (the most significant “digit”) can be
decoded by finding the letter associated with the sub-
range bounding the fraction that represents the text.
After determining each letter of the source text, the
fraction can be resealed to remove that letter; this is
done by subtracting the base of the letter’s subrange
and dividing by the width of the subrange. Once this is
done, the next letter can be decoded.

As an example of an arithmetic code, consider the
4 letter alphabet (A, B, C, D) with the probabilities
(0.125, 0.125, 0.25, 0.5). The interval [0, 1)could be
subdivided as follows:

A = [0, 0.125), B = [0.125, 0.25),

C = [0.25, 0.5), D = [0.5, 1)

This subdivision is easily derived from the cumulative
probabilities of each letter and its predecessors in the
alphabet. Given the compressed text 0.6 (represented as
a decimal fraction), the first letter must be D because it
is in the range [0.5, 1). Resealing gives:

(0.6 - 0.5)/0.5 = 0.2

Thus, the second letter must be B because it is in the
range [0.125, 0.25). Resealing gives:

(0.2 - 0.125)/0.125 = 0.6

This implies that the third letter is D, and that, lacking
any information about the length of the message, it
could be the repeating string DBDBDB

The primary problem with arithmetic codes is the
high precision arithmetic required by interpreting the
entire bit pattern that represents the compressed text as
a number. This problem was solved in 1979 [6]. The
compression efficiency of a static arithmetic code will
equal H, only if infinite precision arithmetic is used.
The finite precision of most machines, however, is suf-
ficient to allow extremely good compression. Integer
variables 16 bits long, with 32 bit products and divi-
dends, are sufficient to allow adaptive arithmetic
compression to within a few percent of the limit, and
the result is almost always slightly better than Vitter’s
optimal adaptive Huffman code.

As with Huffman codes, static arithmetic codes
require either two passes or prior knowledge of the
letter frequencies. Adaptive arithmetic codes require
an efficient algorithm for maintaining and updating the
running frequency and cumulative frequency informa-
tion as letters are processed. The simplest way of doing
this is to associate a counter with each letter that is

incremented each time the letter or any of its succes-
sors in the alphabet are encountered. With this
approach, the frequency of a letter is the difference
between its counter and its predecessor’s counter. This
simple approach can take O(n) time to process a letter
from an n letter alphabet. In Witten, Neal and Cleary’s
C implementation of an arithmetic data compression
algorithm [12], the average performance was improved
by using a move-to-front organization, thus reducing
the number of counters that must be updated each time
a letter is processed.

Further improvement in the worst-case performance
for updating the cumulative frequency distribution
requires a radical departure from the simple data struc-
tures used in [12]. The requirements that this data
structure must meet are best examined by expressing it
as an abstract data type with the following five opera-
tions: initialize, update, findletter, findrange, and maxrange.
The initialize operation sets the frequency of all letters
to one; any nonzero value would do, as long as the
encode and decode algorithms use the same initial fre-
quencies. An initial frequency of zero would assign an
empty range to a character, thus preventing it from
being transmitted or received.

The update(c) operation increments the frequency of
the letter c. The findletter and findrange functions are
inverses, and update may perform any reordering of the
alphabet as long as it maintains this inverse relation-
ship. At any point in time, findletter(f, c, min, max) will
return the letter c and the associated cumulative fre-
quency range [min, max), where this range contains f.
The inverse function, findrange(c, min, max) will return
the values for min and max when given the letter c.
The maxrange function returns the sum of the fre-
quencies of all letters in the alphabet, and is needed
to scale the cumulative frequencies into the
interval [0, 1).

Applying Splaying to Arithmetic Codes
The key to implementation of the cumulative fre-
quency data structures, with worst case behavior better
than O(n) per operation on an n letter alphabet, is to
organize the letters of the alphabet as leaves in a tree.
Each leaf in this tree can be weighted with the fre-
quency of the corresponding letters, and each internal
node can be weighted with the sum of the weights of
all children. Figure 7 illustrates such a tree for the

A/l B/l

FIGURE 7. A Cumulative Frequency Tree

August 1988 Volume 31 Number 8 Communications of the ACh4 1003

Computing Practices

4 letter alphabet (A, B, C, D) with the probabilities
(0.125, 0.125, 0.25, 0.5) and the frequencies (1, 1, 2, 4).
The maxrange function is trivial to compute on such a
tree; it simply returns the weight on the root. The
update and findrange functions can be computed by tra-
versing a path in the tree from a leaf to the root, and
the findletter function can be computed by traversing a
path from the root to a leaf.

The data structures for representing the cumulative
frequency tree are essentially the same as those already
presented for representing a prefix code tree, with the
addition of an array to hold the frequency of each node
in the structure:

const
maxchar := . . . (maximum source character code];
succmax = maxchar + 1;
twicemax = 2 X maxchar + 1;
root = 1;

type
codetype = 0 . . maxchar (source character code range);
bit = 0 . . 1;
upindex = 1 . . maxchar;
downindex = 1 . . twicemax;

var
left, right: array [upindex] of downindex;
up: array [downindex] of upindex;
freq: array [downindex] of integer;

Initialization of this structure involves not only
building the tree data structure, but initializing the fre-
quencies of each leaf and internal node as follows:

procedure initialize;
var

d: downindex;
u: upindex;

begin
for d := succmax to twicemax do freq[d] := 1;
f oru:=maxchar downtoldobegin

leff[u] := 2 X u;
right[u] := (2 X u) + 1;
freq[u] := freq[lefr[u]] + freq[right[u]];
up[left[u]] := u;
up[right[u]] := u;

end;
end (initialize];

To find a letter and its cumulative frequency range
when given a particular cumulative frequency, the tree
must be entered at the root and traversed towards that
letter, keeping a running account of the frequency
range represented by the current branch of the tree.
The range associated with the root is [0, freq[root]),
which must contain f. When at a particular node i in
the tree associated with range [a, b), where a - b =
freqlli], the ranges associated with the two subtrees will
be [a, a + freq[left[i]]) and [a + freq[left[i]], b); these
subranges are disjoint and the path down the tree will
be such that f is contained in the subranges associated

with each node on the path. This leads to the following
code:

procedure findsymbol(f: integer; var c: codetype;
var a, b: integer);

var
i: downindex;
t: integer;

begin
i := root;
a := 0;
b := freq[root];
repeat

t := a + freq[leff[i]];
if f< tthen begin {left turn)

i := Zeft[i];
b := t;

end else begin (right turn]
i := right[i];
a := t;

end;
unt i 1 i > maxchar;
c := i - succmax;

end (findsymbol)

To find the cumulative frequency range associated
with a letter, the process illustrated for fin.dsymbol must
be reversed. Initially, the only information known
about the letter at node i in the tree is the frequency of
that letter, freq(i). From this, the range [0, freq(i)) can be
inferred; this would be the range associated with the
letter if it were the only letter in the alphalbet. Given
that the range [a, b) is associated with some leaf in the
context of the subtree rooted at i, the range associated
with that leaf in the context of the up[i] can be com-
puted. If i is a left child, this is simply [a, b); if i is a
right child, this is [a + d, b + d), where d == freq[up[i]] -
freq[i], or equivalently, d = freq[left[up[i]]]. This leads
to the following:

procedure findrange(c: codetype; var a, b: integer);
var

i: downindex;
d: integer;

begin
i := c + succmax;
a := 0;
b := freq[i];
repeat

if right[up[i]] = i then begin (i is right child]
d := freq[left[up[i]]];
a := a + d;
b := b + d;

end;
i := up[i];

until i = root;
end (findrange);

If not for the problem of maintaining appropriate bal-
ance in the cumulative frequency tree, the update

1004 Communications of the ACM August 1988 Vo1um.c 31 Number 8

Computing Practices

function would be trivial; consisting of a walk from
the leaf being updated to the root, incrementing the
weights of each node visited. If this were done, starting
with an initially balanced tree, the time per findletter,
findrange, or update operation would be 0 (log2 n) for an
n letter alphabet. This is better than the worst case O(n)
achieved by a linear data structure (with or without a
move-to-front organization), but it can be improved.

Note that each letter compressed by the arithmetic
data compression algorithm requires a call to findrange
followed by a call to update, and that each letter
expanded requires a call to findletter followed by a call
to update. Thus, the path from the root to a letter in the
cumulative frequency tree will be traversed twice dur-
ing compression, and twice during expansion. Minimiz-
ing the total time taken to compress or expand a mes-
sage requires minimizing the total length of all paths
followed in the tree. If the letter frequencies are known
in advance, a static Huffman tree will minimize this
path length! The path length for message S will be
bounded by 2(&(S) + C(S)), where C(S) is the number
of letters in the string and the factor of z is due to the
fact that each path is followed twice.

There is no point in using a cumulative frequency
tree if all probabilities are known in advance, since this
would allow the use of a simple table lookup to find the
probabilities. If they are not known, Vitter’s optimal
Algorithm A could easily be modified to manage the
cumulative frequency tree to obtain a bound on the
path length followed during compression or expansion
of 2(H,(S) + 2C(S)). Similarly, the splay-prefix algorithm
could be used, giving a bound of O(H,(S)) on the path

x i’\ x-A+C i’\

A B C B

FIGURE 8. Semi-Rotation in a Cumulative Frequency Tree

length, but with larger constant factors. The empirical
results presented earlier suggest that these constant fac-
tors are more than compensated for by the simplicity of
the splay-prefix algorithm.

In the context of the splay-prefix algorithm, the splay
operation did not need to manipulate any information
in the internal nodes of the tree. When splaying is used
as part of the update operation, each semi-rotate opera-
tion must preserve the invariants governing the weights
of nodes in the tree. In Figure 8, the tree is semi-rotated
about A; as a result, the weight of x is reduced by the
weight of A and increased by the weight of C. At the
same time, since this is part of an iterative traversal of
the path from A to the root, the weight of A is incre-
mented. The resulting code is shown as:

procedure update(c: codefype);
var

a, b: downindex (children of nodes to semi-rotate):
c, d: upindex {pair of nodes to semi-rotate);

begin
a := c + succmax;
repeat (walk up tree, rotating and incrementing]

c := up[a];
if c # root then begin (a pair remains)

d := up[c];
(exchange children of pair)
b := left [d];
if c= b thenbegin

b := right [d];
right [d] := a;

endelsebegin
left [d] := a;

end;
if a = left[c] then begin

left[c] := b;
endelsebegin

right[c] := b;
end;
up[a] := d;
up[b] := c;
frq[c] := (frq[c] - fres[al) + freq[b];
?9J”d] := freq[a] + 1;

enc;' elhe begin {handle odd node at end of path)
freq[a] := freq[a] + 1;
a := up[a];

end;
until a = root;
freq[root] := freq[root] + 1;

end (update);

The code ignores the problem of overflow in the fre-
quency counters. Arithmetic data compression repeat-
edly uses computations of the form a*b/c, and as a
result, the limit on the precision of computation is set
by the storage allowed for intermediate products and
dividends, not for integer variables. Many 32 bit ma-
chines impose a limit of 32 bits on products and divi-
dends, and thus impose an effective 16 bit limit on the
integers a, b, and c in the above expression. When this
constraint is propagated through the code for arithmetic
data compression, the net effect is a limit of 16383 on
the maximum value returned by maxrange, or freq[root].
As a result, unless all files being compressed are shorter
than 16383 bytes, all frequencies in the data structure
must be periodically resealed to force them into this
range. An easy way to do this is to divide all frequen-
cies by a small constant such as two, and rounding up
to prevent any frequencies from dropping to zero.

Leaves in the cumulative frequency tree can be eas-
ily resealed by division by two, but internal nodes are
not as easily resealed because of the difficulty of propa-
gating rounding decisions up the tree. As a result, the
easiest thing to do is rebuild the tree, as shown in the
following code:

August 1988 Volume 31 Number 8 Communications of the ACM 1005

Computing Practices

procedure rescale;
vaz

d: downindex;
u : upindex;

begin
for d := succmax to twicemax

do freq[d] := (freq[d] + 1) div 2;
for u := maxchar downtcl 1 do begin

leff[u] := 2 X u;
right[u] := (2 X u) + 1;
freq[u] := freq[leff[u]] + freq[right [u]];
up[left[u]] := u;
up[right[u]] := u;

end;
end irescale];

Performance of Arithmetic Codes
The above routines were incorporated into a Pascal
transliteration of the Witten, Neal and Cleary’s algo-
rithm [12]. As expected, there was no significant differ-
ence between the compressed text resulting from the
original and from the modified arithmetic compression
algorithm. Usually, the compressed texts that resulted
from the two algorithms were exactly the same length.

/

:
Object ’

0 Original (move-to-front)

0 Modified (splay tree)

FIGURE 9. Performance of Arithemtic Compression Algorithms

Figure 9 shows the speed of the two arithmetic
compression algorithms as a function of H,. Time is
shown in milliseconds per source byte, and entropy is
shown in bits per source byte. The files with 2 bits/
byte and 8 bits/byte were artificially created; the oth-
ers were an image file digitized using 16 grey levels
(3.49 bits/byte), a text file (4.91 bits/byte), and an
M68000 object file (6.02 bits/byte). Time was measured
on an HP9836CU workstation under HP-UX.

As shown in Figure 9, splaying applied to a cumula-
tive frequency tree only outperforms the move-to-front
algorithm employed by Witten, Neal, and Cleary [12]
when the data to be compressed has an entropy of more
than about 6.5 bits/byte. Below this, the move-to-front
method always slightly outperforms splaying. Thus,
splaying or other approaches to balance the cumulative

frequency tree are probably not justified for compress-
ing data using a 256 letter alphabet. For 1a:rger alpha-
bets, on the other hand, this data suggests that splaying
may well be the best approach.

CONCLUSIONS
The splay-prefix algorithm presented here is probably
the simplest and fastest adaptive data compression algo-
rithm based on the use of a prefix code. Its; outstanding
characteristics are a very small storage req.uirement
and locally adaptive behavior. When large amounts of
memory are available, use of the splay-prefix algorithm
with a Markov model frequently allows more effective
data compression than competing algorithms that use
the same amount of memory.

The advantages of the splay-prefix algorithm were
most effectively demonstrated when it was applied to
compressing image data. The locally adaptive character
of the algorithm allowed it to compress an image to
fewer bits than the self-entropy of the image measured,
assuming a static source. Finally, a simple Markov model
using the splay-prefix algorithm frequently allowed
compression superior to the widely used Ziv-Lempel
algorithm which uses a comparable amount of memory.

Arithmetic data compression algorithms can be made
to run in O(H,) time by using a cumulative frequency
tree balanced by the splaying heuristic for the statisti-
cal model required by the algorithm. This bound is
new, but the simple move-to-front heuristic is more
effective for the small alphabets typically .used.4

Both the splay-prefix algorithm and the use of splay-
ing to manage the cumulative frequency t:ree provide
useful illustrations of the utility of splaying to manage
trees which are not lexicographically organized. The
notion of twisting a tree prior to splaying to eliminate
the need for the zig-zag case may be applicable to other
nonlexicographic trees, as may the notion of semi-
rotation for balancing such a tree. As an example, these
techniques should be applicable to merge trees where
a binary tree of 2-way merges is used to construct an
n-way merge; Saraswat appears to have used similar
ideas in developing his Prolog implementa.tion of merge
trees [7].

It is interesting to note that, as with other adaptive
compression schemes, the loss of one bit from the
stream of compressed data is catastrophic! This suggests
that it would be interesting to search for ways of
recovering from such a loss; yet it also suggests the use
of such compression schemes in cryptography. It is
well known that compressing a message before it is
encrypted increases the difficulty of breaking the code
simply because code breaking relies on redundancy in
the encrypted text and compression reduces this redun-
dancy. The new possibility, introduced by the compres-
sion algorithms described here, is to use the initial
state of the prefix code tree or the initial state of the

‘Alistair Moffat of the University of Melbourne has independently achieved
the same performance using a data structure derived from the implicit heap of
heapsort.

1006 Communications of the ACM August 1988 VoJume 31 Number 8

Computing Practices

cumulative frequency tree as a key for direct encryp-
tion during compression. The arithmetic compression
algorithm could further complicate the work of a code
breaker because letter boundaries to not necessarily
fall between bits.

The key space for such an encryption algorithm is
huge. For an II letter alphabet, there are n! permuta-
tions allowed on the leaves of the tree, times C,-, trees
with II - 1 internal nodes, where C, = (Zi)!/i! (i + l)!,
the ith Catalan number. This product simplifies to
(2(n - l))!/[n - l)!. For n = 257 [a 256 letter alphabet
augmented with an end-of-file character), this is
512!/256!, or somewhat less than 22200. A compact inte-
ger representation of a key from this space would
occupy 675 eight-bit bytes; clearly, such large keys may
pose problems. One practical solution would simply
involve starting with an initial balanced tree, as in the
compression algorithms presented here, and then splay-
ing this tree about each of the letters in a key string
provided by the user; most users are unlikely to pro-
vide key strings as long as 675 bytes, and it takes keys
longer than this to allow splaying to move the tree into
all possible configurations, but even short key strings
should provide a useful degree of encryption.

REFERENCES
1. Bentley, J.L., Sleator, D. D., Tarjan, R. E.. and Wei, V. K. A locally

adaptive data compression scheme. Commun. ACM 29.4 (Apr. 1986).
320-330.

2. Gallager, R.G. Information Theory and Reliable Communication. John
Wiley & Sons. New York, 1968.

3. Gallager. R.G. Variations on a theme by Huffman. IEEE Trans.
Inform. Theory IT-24, 6 (Nov. 197&J), 666-674.

4.

5.

6.

7.

8.

9.

10.

11.

12.

Jones, D.W. An empirical comparison of priority queue and event set
implementations. Commun. ACM 29, 4 (Apr. 1986), 300-311.
Knuth, D.E. Dynamic Hoffman coding. J Algorithms 6. 2 (Feb. 1985),
163-180.
Rubin, F. Arithmetic stream coding using fixed precision registers.
IEEE Trans. Inform. Theory IT-25, 6 [Nov. 1979), 672-675.
Saraswat, V. Merge trees using splaying-or how to splay in parallel
and bottom-up. PROLOG Digest 5, 22 (Mar. 27, 1987).
Sleator, D.D.. and Tarjan, R.E. Self-adjusting binary trees. In Proceed-
ings of the ACM SIGACT Symposium on Theory of Computing (Boston,
Mass., Apr. 25-27). ACM, New York, 1983, pp. 235-245.
Tarjan, R.E., and Sleator, D.D. Self-adjusting binary search trees.
J. ACM 32, 3 (July 1985), 652-686.
Vitter, J.S. Two papers on dynamic Huffman codes. Tech. Rep. CS-
85-33. Brown University Computer Science, Providence, R.I.
Revised Dec. 1986.
Welch. T.A. A technique for high-performance data compression.
ZEEE Comput. 17, 6 (June 1984), 8-19.
Witten, I.H., Neal, R.M., and Cleary, J.G. Arithmetic coding for data
compression. Commun. ACM 30, 6 (June 1987), 520-540.

CR Categories and Subject Descriptors: E.l [Data Structures]: trees;
E.2 [Data Storage Representation]: linked representations; E.4 [Coding
and Information Theory]: data compaction and compression

General Terms: Algorithms, Performance
Additional Key Words and Phrases: Adaptive algorithms, arithmetic

codes, data compression, splay trees, prefix codes

Received 11/87; accepted Z/88

Author’s Present Address: Douglas W. Jones, Dept. of Computer
Science, University of Iowa, Iowa City, IA 52242. Internet address:
jones@cs.uiowa.edu

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

August 1988 Volume 31 Number 8 Communications of the ACM 1007

