
COMP1917: Computing 1

13. Structures

Reading: Moffat, Chapter 8.

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 13. Structures 1

Overview

� Type Definitions

� Booleans

� Structure Notation

� Passing Structures as Parameters

� Pointers to Structures

� Nested Structures

� Returning Structures

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 13. Structures 2

Type Definitions

We can use the keywordtypedef to make our own type definitions:

typedef int Boolean;

This means variables can be declared asBoolean but they will actually be

of typeint.

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 13. Structures 3

Using typedef for Boolean variables

#define TRUE 1

#define FALSE 0

typdef int Boolean;

int main(void) {

Boolean keep_going = TRUE;

while(keep_going) {

keep_going = FALSE;

...

if(...) {

keep_going = TRUE;

}

}

}COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 13. Structures 4

Using typedef to adjust precision

typedef float Floating;

Floating my_atanh(Floating x)

{

Floating u = (1.0 - x)/(1.0 + x);

return(-0.5 * log(u));

}

If we later decide we need more precision, we can change to:

typedef double Floating;

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 13. Structures 5

Structured Data Types

A structure is a collection of variables, perhaps of different types, grouped

together under a single name.

Structures:

� help to organise complicated data into manageable entities

� expose the connection between data within an entity

� are defined using thestruct keyword.

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 13. Structures 6

Combining typedef and struct

Note: we use the convention that the name of the defined type isthe same

as thestruct modifier, but with the first letter capitalized.

typedef struct date Date;

struct date {

int day;

int month;

int year;

}; // don’t forget this semi-colon!

We can then declare a structured variable like this:

Date christmas;

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 13. Structures 7

Accessing Members of a Structure

Note that defining the structure itself does not allocate anymemory.

We need to declare a variable in order to allocate memory:

Date christmas;

The components of the structure can be accessed using the “dot” operator

christmas.day = 25;

christmas.month = 12;

christmas.year = 2014;

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 13. Structures 8

Assigning a Structure

Unlike arrays, it is possible to copy all components of a structure in a

single assignment:

my_birthday = christmas;

It is notpossible to compare all components with a single comparison:

if(my_birthday == christmas) // this is NOT allowed!

If you want to compare two structures, you need to write a function to

compare them component-by-component and decide whether they are

“the same”.

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 13. Structures 9

Passing Structures as Parameters

A structure can be passed as a parameter to a function:

void print_date(Date d)

{

printf("%d/%d/%d\n", d.day, d.month, d.year);

}

Because parameters in C are “call-by-value”, a copy will be made of the

entire structure, and only this copy will be passed to the function.

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 13. Structures 10

Pointers to Structures

If a function needs to modifiy components within the structure, or if we

want to avoid the inefficiency of copying the entire structure, we can

instead pass apointerto the structure as a parameter:

int scan_date(Date *d, FILE *fp)

{

return(fscanf(fp,"%d/%d/%d",

&((*d).day), &((*d).month), &((*d).year)));

}

void increment(Date *d)

{

(*d).year++;

}

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 13. Structures 11

Arrow Notation

Note that the brackets are necessary, because++ takes precedence over*

*(d.year)++; // this will cause an error, because d is

// not a structure and year is not a pointer

*d.year++; // same as above, by operator precedence

(*d).year++; // correct usage

In order to avoid this confusion, the “arrow” notation is provided as an

alternative:

d->year++; // same as (*d).year++

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 13. Structures 12

Program using Structures

{

Date christmas;

christmas.day = 25;

christmas.month = 12;

christmas.year = 2014;

printf("This christmas is ");

print_date(christmas);

increment (christmas);

printf("Next christmas is ");

print_date(christmas);

}

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 13. Structures 13

Nested Structures

One structure can be nested inside another

typedef struct date Date;

typedef struct time Time;

typedef struct speeding Speeding;

struct date { int day, month, year; };

struct time { int hour, minute; };

struct speeding {

Date date;

Time time;

double speed;

char plate[MAX_PLATE];

};
COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 13. Structures 14

Returning Structures

The return type of a function can be a structure, or a pointer to a structure

Speeding * scan_speeding(FILE *fp)

{ Speeding * new_speeding =

(Speeding *)malloc(sizeof(Speeding));

if(new_speeding != NULL) {

if((scan_date(&new_speeding->date, fp))

&&(scan_time(&new_speeding->time, fp))

&& fscanf(fp,"%lf", &new_speeding->speed)

&& fgets(new_speeding->plate, MAX_PLATE, fp)) {

return(new_speeding);

...

}

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 13. Structures 15

Sample Program

Study the sample programspeeding.c

which combines:

� arrays

� pointers

� memory allocation

� strings

� structures

� files

� command-line arguments

COMP1917 c©Alan Blair, UNSW, 2006-2014

