
COMP1917: Computing 1

12. Debugging

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 12. Debugging 1

Overview

� Programming cycle

� Do-it-yourself debugging

� Debugging withgdb

� Nastier bugs

� Memory leaks

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 12. Debugging 2

Developing Programs

1. Understand the problem

2. Design data structures and algorithms

3. Implement design as a C program

4. Execute the program on test data

5. Check whether it gives correct results

6. Repeat above steps until it works ok

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 12. Debugging 3

The Programming Cycle

Edit

Test

Debug

Program

Correct

Syntax

Errors

ErrorsRun−time

Done!

Design

nedit

gdb

prog.c

a.out

dcc, makeCompile

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 12. Debugging 4

Compiler Errors

The C compiler will pick up superficial errors, and give warnings when it

thinks a program “looks wrong”:

� mis-spelling of function or variable names

� forgetting to include a header file

� missing brackets, semicolons, etc.

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 12. Debugging 5

Linker Errors

The compiler produces object code for each module independently.

It assumes that all references to external names will be resolved later.

If you refer to an undefined name:

Undefined first referenced

symbol in file

_print program.o

ld fatal: Symbol referencing errors.

No output written to a.out

Often caused by misspelling function names, or forgetting to include an
external declaration or function prototype in your header file.

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 12. Debugging 6

Program Debugging

Debugging: process oflocatingandfixing bugs.

Bug: piece of program that does not do what you intended.

Consequences of bugs:

• run-time error (if you’re lucky)

• incorrect results (if you’re unlucky)

To perform debugging, you need to know:

• in detail, what the code should do

• in detail, what it actually does

A debugger(e.g.gdb) can assist with the latter.

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 12. Debugging 7

Program Execution

Under Unix, a program executes either:

• to completion, producing results(correct?)

• until it detects an error andexits

• until a run-time error halts it

(e.g.Segmentation violation - core dumped)

stdout

stderr

a.out

exit status

stdin

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 12. Debugging 8

Do-it-yourself Debugging

placeprintf()’s in your code to print intermediate values of variables

Theassert() function can also be used to check assumptions about what

should be true at certain points in your code.

#include <assert.h>

...

assert(expression);

if the asserted expression evaluates to0 (False) the program will print a

diagnostic message and halt.

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 12. Debugging 9

Making your own DEBUG mode

You must remember to remove debuggingprintf() statements from

the final version of your program.assert() statements should also be

removed, because they may slow down execution of the code.

Pre-processor directives can be used to switch debugging onand off:

#define DEBUG 1

...

#ifdef DEBUG

printf(" x = %d, y = %d\n", x, y);

#endif

When you think the bugs are all fixed, comment out the top line and all

the debugging code will be suppressed.

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 12. Debugging 10

Debuggers

A debugger gives you control of program execution:

• normal execution (run, cont)

• stop at a certain point (break)

• one statement at a time (step, next)

• examine program state (print)

stdout

stderr

a.out

exit status

stdin

gdb

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 12. Debugging 11

The gdb debugger

gdb – a line-based interactive debugger.

ddd – an X-windows-based interface forgdb.

To use programs withgdb (or ddd), they must be compiled with thegcc

compiler.

gdb (ddd) takes two arguments:

% gdb executable core

E.g.

% gdb a.out core

% gdb myprog

(Thecore argument is used when the program has already crashed.)

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 12. Debugging 12

gdb sessions

A sessionwith gdb is a sequence of commands to control and observe the
executable.

Command = sequence of words on single line.

% gcc -Wall -g -o prog prog.c

% gdb prog

GNU gdb 6.8-debian

Copyright (C) 2008 Free Software Foundation, Inc.

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying" and "show warranty" for details.

(gdb) break f

Breakpoint 1 at 0x1082c: file prog.c, line 32.

(gdb) run

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 12. Debugging 13

gdb sessions

Starting program:/prog

Enter a b c: 1 2 3

Breakpoint 1, f (i=1, j=2) at prog.c:32

32 a = i + j;

(gdb) next

33 b = i*i + j*j;

(gdb) next

34 return a*b;

(gdb) print a

$1 = 3

(gdb) print b

$2 = 5

(gdb) cont

...

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 12. Debugging 14

Basic gdb commands

• quit – quits fromgdb

• help [CMD] – on-line help

Gives information aboutCMD command.

• run ARGS – run the program

ARGS are whatever you normally use, e.g.

% ./prog < data

is achieved by:

(gdb) run < data

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 12. Debugging 15

gdb status commands

• where – stack trace

Find which function the program was executing when it crashed.

Stack may also have references to system error-handling functions.

• up [N] – move “up” the stack

Allows you to skip to “scope” of a particular function in stack.

• list [LINE] — show code

Displays five lines either side of current statement.

• print EXPR – display expression values

EXPR may use(current values of)variables.

Special expressionaat1 shows all of the arraya.

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 12. Debugging 16

gdb execution commands

• break [PROC|LINE] - set break-point

On entry to functionPROC (or reaching lineLINE), stop execution and

return control togdb.

• next - single step (over functions)

Execute next statement; if statement is a function call, execute entire

function body.

• step - single step (into functions)

Execute next statement; if statement is a function call, go to first statement

in function body.

For more details seegdb’s on-line help.

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 12. Debugging 17

Nastier Bugs

When a program really makes a mess of things, the debugger mayget

confused due to corruption of system memory.

There are other compilers likedcc, which are similar togcc but do more
checking. If the program crashes, or an array is overrun, etc., the compiler
will (hopefully) give you some useful information:

mudflap violation 47 (check/write): time=1161558399.248071

ptr=0xbfbf1aa8 size=4

pc=0xb7ee6347 location=‘overrun.c:10 (main)’

Segmentation fault

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 12. Debugging 18

dcc error messages

mudflap violation 1 (check/write): time=1161558716.559908

ptr=0xbf84fb0c size=4

pc=0xb7e44347 location=‘overrun.c:10 (main)’

/usr/lib/libmudflap.so.0(__mf_check+0x37) [0xb7e44347]

./a.out(main+0x79) [0x8048761]

/usr/lib/libmudflap.so.0(__wrap_main+0x176) [0xb7e44f66]

Nearby object 1: checked region begins 1B after and ends 4B after

mudflap object 0x80cb318: name=‘overrun.c:6 (main) a’

bounds=[0xbf84fae4,0xbf84fb0b] size=40 area=stack check=0r/10w

liveness=10

alloc time=1161558716.559778 pc=0xb7e44d97

number of nearby objects: 1

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 12. Debugging 19

Memory Leaks and valgrind

Sometimes a program eventually crashes due to a “memory leak” – a slow

accumulation of memory blocks which aremalloc’ed but neverfree’d.

Tools likevalgrind can help you to track these memory leaks.

% gcc -g -o xyz xyz.c

% valgrind xyz

When the program terminates,valgrind will give you a summary of

memory usage and report any memory blocks which have not been

free’d.

Warning:valgrind makes the program runvery slowlybecause it does

so much checking.

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 12. Debugging 20

valgrind messages

==31180== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 11 from 1)

==31180== malloc/free: in use at exit: 64 bytes in 8 blocks.

==31180== malloc/free: 8 allocs, 0 frees, 64 bytes allocated.

==31180== For counts of detected errors, rerun with: -v

==31180== searching for pointers to 8 not-freed blocks.

==31180== checked 59,376 bytes.

==31180==

==31180== LEAK SUMMARY:

==31180== definitely lost: 64 bytes in 8 blocks.

==31180== possibly lost: 0 bytes in 0 blocks.

==31180== still reachable: 0 bytes in 0 blocks.

==31180== suppressed: 0 bytes in 0 blocks.

==31180== Use --leak-check=full to see details of leaked memory.

COMP1917 c©Alan Blair, UNSW, 2006-2014

