
COMP1917: Computing 1

7. Number Storage and Accuracy

Reading: Moffat, Section 13.2

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 7. Number Storage and Accuracy 1

Outline

� Binary Arithmetic

� Negative Numbers

� Overflow

� Floating Point

� Roundoff Errors

� Type Conversion

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 7. Number Storage and Accuracy 2

Decimal Arithmetic – Addition

Sum

2 0 9 7

5
+

2 1 0 2

1 1
carry

Addend

Augend

� Important principle of “sum” and “carry”

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 7. Number Storage and Accuracy 3

Binary Arithmetic – Addition

� Similar idea: “sum” and “carry”

� Four cases to consider:

Addend 0 0 1 1

Augend 0 1 0 1

— — — —

Sum 0 1 1 0

Carry 0 0 0 1

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 7. Number Storage and Accuracy 4

Binary Arithmetic – Addition

1010+1210 = 2210

1 0 1 0 +

1 1 0 0

1 0 1 1 0

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 7. Number Storage and Accuracy 5

Unsigned Data Types in C

type bytes bits range

unsigned char 1 8 0 ... 255

unsigned short 2 16 0 ... 65535

unsigned int 4 32 0 ... 4294967295

n 0 ... 2n −1

Note: these sizes are machine dependent. Some machines alsoprovide an

“unsigned long” type using a larger number of bytes. You can use the

sizeof() function to determine the sizes on your machine.

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 7. Number Storage and Accuracy 6

Overflow

Question: What will happen when this code is executed ?

unsigned char c = 250;

int i;

for(i=0; i < 10; i++) {

printf("c = %3d\n", c);

c++;

}

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 7. Number Storage and Accuracy 7

“Clock” Arithmetic

9
1000

0000

0

0100 41100C

A 6

5

1

2

3

F
E

D

8
7

B
1010

00011111

1110

1101

1011 0101

0110

0011

0010

1001 0111

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 7. Number Storage and Accuracy 8

Representations for Negative Numbers

Hex Binary Unsigned Sign-Mag Excess-7 2’s Complement

F 1111 15 −7 +8 −1
E 1110 14 −6 +7 −2
D 1101 13 −5 +6 −3
C 1100 12 −4 +5 −4
B 1011 11 −3 +4 −5
A 1010 10 −2 +3 −6
9 1001 9 −1 +2 −7
8 1000 8 −0 +1 −8
7 0111 7 +7 0 +7
6 0110 6 +6 −1 +6
5 0101 5 +5 −2 +5
4 0100 4 +4 −3 +4
3 0011 3 +3 −4 +3
2 0010 2 +2 −5 +2
1 0001 1 +1 −6 +1
0 0000 0 +0 −7 0

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 7. Number Storage and Accuracy 9

Comparison of Representations

� Signed-Magnitude is difficult to compute with, and has two zeros

� Excess-7 is useful for floating point exponents, but not for general

integers

� 2’s Complement is the most convenient, and most widely used

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 7. Number Storage and Accuracy 10

Justification for 2’s Complement

Motivation:

We want to find a way of representing negative numbers which

allows us to use the same hardware we already use for positive

numbers.

Question 1:

What number should we use for “minus one” ?

i.e. what number, when one is added to it, becomes zero ?

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 7. Number Storage and Accuracy 11

“Minus One”

Answer 1:

The binary number 11111111 should be used for “minus one”.

Check:

1 1 1 1 1 1 1 1 +

1

0 0 0 0 0 0 0 0

(Note: the final carry bit is ignored)

Question 2:

What number should be the negative of 10011100 ?

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 7. Number Storage and Accuracy 12

Two’s Complement

Answer 2:

The negative of 10011100 should be

01100011+1= 01100100

Check:

1 0 0 1 1 1 0 0 +

0 1 1 0 0 0 1 1

1 1 1 1 1 1 1 1 +

1

0 0 0 0 0 0 0 0

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 7. Number Storage and Accuracy 13

Computing Two’s Complement

General rule for finding the negative of a binary number:

Step 1: replace every 1 with 0, every 0 with 1

Step 2: add 1

Example: find the 2’s Complement representation for−5810

0 0 1 1 1 0 1 0

1 1 0 0 0 1 0 1 one’s complement

1 +1

1 1 0 0 0 1 1 0 two’s complement

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 7. Number Storage and Accuracy 14

Time Zones

International Date Line

Greenwich Mean Time

−9 hours

−6 hours

−3 hours

+9 hours

+3 hours

+6 hours

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 7. Number Storage and Accuracy 15

Signed Clock Arithmetic

(−2)

1000

0000

0100 41100C

A 6

5

1

2

3

E

D

8
7

B
1010

0001

1110

1101

1011 0101

0110

0011

0010

1001 0111

1111

(−1)

(−4)

0

(−5)

(−3)

(−6)

(−8)

F

9(−7)

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 7. Number Storage and Accuracy 16

Sign and MSB

You can tell thesignof the number from theMost Signifcant Bit(MSB)

� if MSB is 1, number is negative

� if MSB is 0, number is positive or zero

Note: this means there is always “one extra” negative number.

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 7. Number Storage and Accuracy 17

Signed Data Types in C

type bytes bits range

char 1 8 −128 ...+127

short 2 16 −32768 ...+32767

int 4 32 −2147483648 ...+2147483647

n −2n−1 ... +(2n−1−1)

Again, the exact sizes are machine dependent.

Some machines provide a “long” type using more bytes.

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 7. Number Storage and Accuracy 18

Signed Overflow

Question: What will happen when this code is executed ?

int i=0;

while (i >= 0) {

i += 1024;

}

printf("%d %d\n", i-1, i);

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 7. Number Storage and Accuracy 19

Overflow in Two’s Complement

� In two’s complement we can represent numbers in the range

−(2n−1) ... +(2n−1−1)

� If we try to add two positive binary numbersx and y where

x+ y > 2n−1−1, the sum will result in a negative number (MSB is 1)

◮ positive overflow

� If we try to add two negative binary numbers−x and−y where

x+ y > 2n−1, the sum will result in a positive number (the MSB is 0)

◮ negative overflow

� Can use XOR gate in hardware to determine overflow condition

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 7. Number Storage and Accuracy 20

Positive Overflow in Two’s Complement

� Addition of positive numberswithout overflow

0 x x x

0 x x x +

0 x x x

◮ Carry into MSB must have been 0; carry out of MSB is 0

� Addition of positive numberswith overflow

0 x x x

0 x x x +

1 x x x

◮ Carry into MSB must have been 1; carry out of MSB is 0

� carry in 6= carry out means overflow has occurred

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 7. Number Storage and Accuracy 21

Negative Overflow in Two’s Complement

� Addition of negative numberswithoutoverflow

1 x x x

1 x x x +

1 1 x x x

◮ Carry into MSB must have been 1; carry out of MSB is 1

� Addition of negative numberswith overflow

1 x x x

1 x x x +

1 0 x x x

◮ Carry into MSB must have been 0; carry out of MSB is 1

� carry in 6= carry out means overflow has occurred

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 7. Number Storage and Accuracy 22

Decimal Floating Point Numbers

� We want to be able to represent very large and very small numbers,

with adequate precision. This can be done with “scientific” or

“exponential” notation

◮ speed of light= 1079252848.8= 1.079×109 km/h

◮ mass of proton= 1.672×10−27 kg

� This exponential form has 3 components:

◮ sign (’+’ or ’-’)

◮ exponent (positive or negative integer)

◮ fractional part

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 7. Number Storage and Accuracy 23

Binary Floating Point Numbers

Floating point numbers in the computer

� are in an “exponential” binary form

� are stored in a limited number of bits.

For example, if 16 bits are available, we might allocate:

◮ 1 bit for the sign (0 = ’+’, 1 = ’-’)

◮ 4 bits for the binary exponent (in Excess-7 form)

◮ 11 bits for fractional part, in binary notation

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 7. Number Storage and Accuracy 24

Floating Point Example

� How do we interpret this bit pattern as a floating-point number?

1
︸︷︷︸

Sign

1100
︸ ︷︷ ︸

Exp

01010110000
︸ ︷︷ ︸

Fraction

◮ BecauseSign= 1, the number isnegative

◮ Exponent is1100 in Excess-7, which is 12−7= 5

◮ Binary number is:

−1.0101011×25 =−101010.11

◮ Decimal equivalent is−42.75

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 7. Number Storage and Accuracy 25

Floating Point Details

� Highest exponent1111 is reserved for+infinity, -infinity or NaN

� For exponents between0001 (-6) and1110 (+7), we assume a ’1’ in

front of the fractional part (as in the previous example)

� Lowest exponent0000 is treated as a special case, in order to

represent very small numbers (including zero)

◮ we assume ’0’ instead of ’1’ in front of the fractional part

◮ to compensate, the exponent is increased by one (to -6)

◮ for example:

0
︸︷︷︸

Sign

0000
︸︷︷︸

Exp

00101000000
︸ ︷︷ ︸

Fraction

= 0.00101×2−6

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 7. Number Storage and Accuracy 26

Floating Point Types in C

type bytes bits sign Exponent Fraction

float 4 32 1 bit 8 bits (Excess-127) 23 bits

double 8 64 1 bit 11 bits (Excess-1023) 52 bits

There are Web sites where you can type a number and see its representation

as afloat or double

http://babbage.cs.qc.cuny.edu/IEEE-754

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 7. Number Storage and Accuracy 27

Roundoff Errors

Question: What will happen when this code is executed?

float x = 0.0;

while(x < 1.0) {

x = x + 0.02;

}

printf("x = %1.10f\n", x);

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 7. Number Storage and Accuracy 28

Roundoff Example

Answer:

x = 1.0199996233

Why?

� the Binary expansion of 0.02 does not terminate; so it instead gets

truncated, producing a small error.

� these small errors accumulate, causing the loop to execute one time

too many.

� this problem can often be avoided by using anint rather than a

float to test the loop condition

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 7. Number Storage and Accuracy 29

Big or Small Numbers First?

Which code will produce the more accurate result?

float x = 0.0;

int i;

for(i=0; i<100; i++) {

x += 0.01;

}

x += 1000000.0;

printf("x=%1.2f\n",x);

float x = 0.0;

int i;

x += 1000000.0;

for(i=0; i<100; i++) {

x += 0.01;

}

printf("x=%1.2f\n",x);

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 7. Number Storage and Accuracy 30

Type Conversions

In an expression where you have operands of different types,they are

automatically converted to a common type such that:

• the operand with the “narrower” type is converted into a “wider” type.

This is done only if there is no loss of information.

Warning: Expressions that might lose information,e.g. assigning a float

to an integer, are permissible. If you are lucky, the compiler may generate

a warning.

The best defense against loss of information in automatic type conversion

is to be explicit in your type conversion, i.e. when in doubt,make the type

conversion explicit.

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 7. Number Storage and Accuracy 31

Type Conversions cont.

What is the output of this code ?

float x = 22 / 7;

printf("%1.2f\n", x);

printf("%1.2f\n", 22 / 7.0);

printf("%1.2f\n", (float) 22 / 7);

printf("%1.2f\n", (float) (22 / 7));

printf("%1.2f\n", 22 / 7);

Note: the output may be different from one machine to another!

COMP1917 c©Alan Blair, UNSW, 2006-2014

