
COMP1917: Computing 1

3. Making Choices

Reading: Moffat, Chapter 3.

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 3. Making Choices 1

Outline

� theif construct

� relational and logical operators

� if-else

� conditional expressions (optional topic)

� switch statements (optional topic)

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 3. Making Choices 2

The if construct

if(expression)

statement

• used to decide ifstatement should be executed.

• There is no “boolean” type in C. Instead, zero is regarded as “FALSE”
and anything non-zero is regarded as “TRUE”.

• statement is executed if the evaluation ofexpression is non-zero.

• statement is NOT executed if the evaluation ofexpression is zero.

• “statement” could be a single instruction, or a series of instructions
enclosed in{ }

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 3. Making Choices 3

The if construct cont.

if(expression)

statement1

else

statement2

• Used to decide ifstatement1 should be executed orstatement2.

• statement1 is executed when the evaluation ofexpression is non-zero.

• statement2 is executed if the evaluation ofexpression is zero.

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 3. Making Choices 4

The if construct cont.

Here is an example:

if(x) {

printf("x is non-zero\n");

}

else {

printf("x is zero\n");

}

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 3. Making Choices 5

The if construct cont.

� Notice that ’{’ and ’}’ are used to enclose / group a number of

statements together.

� For this course, we insist you always use curly braces{ } even when

there is only one statement inside.

� Indentation is used to make the code clearer and easier to read.

� Take note of where the semicolons ’;’ are being used.

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 3. Making Choices 6

Style

• As you can see from the code examples, indentation is very important

in promoting the readability of the code.

• Each logical block of code is indented.

• Each ’{’ and ’}’ are indented to the appropriate logical block level.

Style 1: Style 2: (preferred)

if(x) if(x) {

{ statement;

statement; }

}

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 3. Making Choices 7

Relational and logical operators

Relational Operators

> a > b a Greater Thanb

>= a >= b a Greater Than Or Equalb

< a < b a Less Thanb

<= a <= b a Less Than Or Equalb

Equality Operators

== a == b a Equal tob

!= a != b a Not Equal tob

Logical Operators

&& a && b a logical AND b

|| a || b a logical ORb

Unary Operator

! ! a Logical NOTa

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 3. Making Choices 8

Single or double equals

� note the difference between = and ==

x = y;

(store the value ofy into x)

if(x == y) ...

(check whether the values ofx andy are equal)

� in C, an assignment evaluates to the value assigned.

Thus it is legal (but not encouraged) to write

x = y = z = 0;

� if you accidentally use = instead of == the program will malfunction

but the compiler will not warn you (unless you use the-Wall option)

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 3. Making Choices 9

Lazy evaluation

Both&& and|| are evaluated in alazy manner from left to right.

Once the truth or falsehood is determined, the evaluation stops.

Example:

if((x != 0.0)&&(sin(1.0/x) > 0.5)) {

...

}

If the first expression(x != 0.0) fails, the program will not attempt

to evaluate the second expression (thus avoiding a divide-by-zero error).

“Non-lazy” equivalents are& and| .

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 3. Making Choices 10

Unary Negation operator

The unary negation operator converts a non-zero operand into 0 (zero) and

a zero operand into 1 (one). For example,

if (!(height <= 130 && width <= 240) {

printf("Envelope too large!\n");

}

.. is the same as ..

if (height > 130 || width > 240) {

printf("Envelope too large!\n");

}

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 3. Making Choices 11

Operator Precedence

Operators Associativity

(function call) [] -> . L → R
! ~ ++ −− + - * & (type) sizeof R→ L
* / % L → R
+ − L → R
<< >> L → R
< <= > >= L → R
== != L → R
& L → R
^ L → R
| L → R
&& L → R
|| L → R
?: R→ L
= += −= *= /= %= &= ^= —= <<= >>= R→ L
, L → R

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 3. Making Choices 12

The if-else statement

So far you’ve seen anif statement that looks like:

if(expression)

statement1

else

statement2

But what if you have more conditions to test?

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 3. Making Choices 13

Complex if-else statement

When you nest two or moreif statements together,e.g.:

if(expression1)

if(expression2)

if(expression3)

statement1

else

statement2

The rule is that the lastelse is associated with the closest previousif

statement that does not (yet) have anelse component.

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 3. Making Choices 14

Avoid “dangling else”

To force theelse to be associated differently,e.g.: say you want the else

to be associated with the secondif, then:

if(expression1) {

if(expression2) {

if(expression3)

statement1

}

else

statement2

}

By using{ } braces, you force the association you want.

It is good programming style to always include braces, for clarity.

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 3. Making Choices 15

The else if statement

You can use the “else if” statement to create amulti-way decision

chain, i.e.:

if(expression1)

statement1

else if(expression2)

statement2

else if(expression3)

statement3

else

statement4

Eachexpressionis evaluated in order until one is found to be “true”,

which then results in that respective statement being executed.

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 3. Making Choices 16

The else if statement cont.

If none of theexpressionsis found to be true, then the statement associated

with the lastelse is the “catch-all” (i.e. “none of the above”) case that

will be executed.

Please note the indentation used, it is suggested that you follow the same

indentation strategy in order to make the code more uniform and more

readable.

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 3. Making Choices 17

Example: Days in the Month

if(month == 2) { // February

if(year% 4 == 0 &&(year%100 != 0 || year%400 == 0)) {

num_days = 29; // Leap Year
}

else {

num_days = 28;
}

}

else if(month==4 || month==6 || month==9 || month==11) {

num_days = 30; // April, June, September, November
}

else {

num_days = 31;
}

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 3. Making Choices 18

Conditional Expressions (Optional Topic)

Conditional expressions have the form:

expr1 ? expr2 : expr3

For example,

z = (x < a) ? x : a ;

.. is the same as ..

if(x < a)

z = x;

else

z = a;

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 3. Making Choices 19

The switch statement (Optional Topic)

Like the multi-wayelse if statement, theswitch statement behaves in

a similar manner:

switch(expression) {

case const-expr :

statements

case const-expr :

statements

default:

statements

}

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 3. Making Choices 20

Example of switch (Optional Topic)

switch(month) {

case 2:

num_days =

(year% 4 == 0 &&(year%100 != 0 || year%400 == 0)) ?

29 : 28 ;

break;

case 4: case 6: case 9: case 11:

num_days = 30;

break;

default:

num_days = 31;

break;

}
COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 3. Making Choices 21

The switch statement (Optional Topic)

Things to note:

• eachcase must be a constant integer andnotan expression;

• thedefault is optional;

• if a case matches theexpression value, then execution starts at that
case;

• if none of thecases match, then thedefault action is executed;

• if there is nodefault and nocase’s match, thenno action takes
place;

• thecase anddefault can occur in any order (but only onedefault
is allowed perswitch statement).

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 3. Making Choices 22

The switch statement (Optional Topic)

Things to note:

• break is used to force an immediate exit from theswitch statement

upon acase const-expr match.

• if break is omitted, then execution will flow on into the nextcase

label; this is called “falling through” from one case to another.

• “falling through” is not considered good practice and should be

avoided where possible. If you must do it, then make sure you flag it

in your comments and make it very obvious.

• it is good practice to put abreak at the end of the the last case even

though it is not strictly necessary.

COMP1917 c©Alan Blair, UNSW, 2006-2014

