
COMP1917: Computing 1

1. Introduction

Reading: Moffat, Chapter 1.

COMP1917 c©UNSW, 2012

COMP1917 14s2 Introduction 1

Course Web Site

http://www.cse.unsw.edu.au/~cs1917/14s2

Please check this Web Site regularly for updated information, including:

� Course Outline

� Notices

� Tutorial and Lab Exercises

� Assignments

� Style Guide

� Sample Programs

� Supplementary Material

COMP1917 c©UNSW, 2012

COMP1917 14s2 Introduction 2

Textbook

Recommended Text: Alistair Moffat, Programming, Problem Solving,

and Abstraction with C, Pearson Educational, Australia, 2003.

Reference Texts: Brian W. Kernighan and Dennis M. Ritchie,The C

Programming Language, 2nd Edition, Prentice Hall, 1988.

Jeri R. Hanly and Elliot B. Koffman,Problem Solving and Program

Design in C, 7th Edition, Addison-Wesley, 2013.

Paul Davies,The Indispensable Guide to C: With Engineering

Applications, Addison-Wesley, 1995.

COMP1917 c©UNSW, 2012

COMP1917 14s2 Introduction 3

Occupational Health and Safety (OHS)

� Computer Ergonomics and OHS for Students

www.cse.unsw.edu.au/about-us/help-resources/for-students/ergonomics

� Other Resources for Students

www.cse.unsw.edu.au/about-us/help-resources/for-students

COMP1917 c©UNSW, 2012

COMP1917 14s2 Introduction 4

Plagiarism

� ALL work submitted for assessment (including labs and assignments,

etc.) must be your own work

� Collaborative work in the form of “think tanking” is encouraged, but

students are not allowed to derive code together as a group during

such discussions

� Plagiarism detection software is used on submitted work

� See Yellow Form:
www.cse.unsw.edu.au/people/studentoffice/policies/yellowform.html

Unix Primer:
http://newcse.cse.unsw.edu.au/help/doc/primer/primer.pdf

CSE Addendum to UNSW Plagiarism policy:
www.cse.unsw.edu.au/~chak/plagiarism/plagiarism-guide.html

COMP1917 c©UNSW, 2012

COMP1917 14s2 Introduction 5

Planned Topics

1. Introduction

2. Numbers In, Numbers Out

3. Making Choices

4. Loops

5. Functions

6. Binary and Hexadecimal

7. Number Storage and Accuracy

8. Characters and Arrays

9. Pointers

10. Strings and Files

11. Writing a Makefile

12. Debugging

13. Structures

14. Linked Lists

15. Stacks and Queues

16. Binary Search Trees

17. Memory and Stack Frames

18. Machine Language

19. Sorting and Efficiency

COMP1917 c©UNSW, 2012

COMP1917 14s2 Introduction 6

Old Lectures on YouTube

� Richard Buckland’s COMP1917 Lectures from Session 1, 2008 are

available onYouTube.com

� they are are not a requirement, but may be used as a supplementary

resource, to see some of the topics presented from a different

perspective

� syllabus was somewhat different, and topics were covered ina

different order

� Search for “COMP1917 UNSW”

COMP1917 c©UNSW, 2012

COMP1917 14s2 Introduction 7

Guiding Philosophy

In this course we would like to:

• encourage the use of abstraction to solve problems.

• emphasise good documentation and coding practice.

• gain a general understanding of how a computer system works.

COMP1917 c©UNSW, 2012

COMP1917 14s2 Introduction 8

Beyond COMP1917

This course provides you with the foundation necessary to deal with more

complex concepts in:

• COMP1927: Computing 2

• COMP2911: Engineering Design in Computing

• COMP2041: Software Construction

• COMP2121: Microprocessors and Interfacing

COMP1917 c©UNSW, 2012

COMP1917 14s2 Introduction 9

Why C ?

� good example of an imperative language

� widely used in industry (and science)

� many libraries and resources

� fast compilers

� provides low level access to machine

COMP1917 c©UNSW, 2012

COMP1917 14s2 Introduction 10

Brief History of C

• C and UNIX share a complex history.

• C was originally designed for and implemented on the UNIX

operating system on a PDP-11 computer.

• Dennis Ritchie was the author of C (around 1971).

• In 1973, UNIX was rewritten in C.

• BCPL strongly influenced the C language.

• B (author: Ken Thompson, 1970) was the predecessor to C,

but there was no A.

COMP1917 c©UNSW, 2012

COMP1917 14s2 Introduction 11

Brief History of C cont.

• BCPL and B were both typeless languages.

• C is atyped language (but not strongly).

• In 1983, American National Standards Institute (ANSI) established a

committee to clean up and standardise the language.

• In 1988, the ANSI C standard was published.

• This greatly improved source code portability.

• C is the main language for writing operating systems and compilers,

but it is also commonly used for a variety of applications.

COMP1917 c©UNSW, 2012

COMP1917 14s2 Introduction 12

Getting Started: C Compilation—one file

C source code:

a.out (executable binary)

file.c

To compilefile.c, you type the following:

gcc file.c

COMP1917 c©UNSW, 2012

COMP1917 14s2 Introduction 13

Getting Started: C Compilation—many files

C source code: file 1.c file 2.c file3.c

file1.o file2.o file3.o

gcc (compilation)

gcc (linker)

a.out (executable binary)

Object files:

COMP1917 c©UNSW, 2012

COMP1917 14s2 Introduction 14

Your First Program

The traditionalHello World program.

main(void)

{

printf("Hello, World!\n ");

}

Note: This example is not fully ANSI compliant.

COMP1917 c©UNSW, 2012

COMP1917 14s2 Introduction 15

Compiling with gcc

To compilehello.c, you type the following:

gcc hello.c

To run the program type:

./a.out

COMP1917 c©UNSW, 2012

COMP1917 14s2 Introduction 16

Command line Options with gcc

• The default withgcc is to compile your program uncritically,
i.e. without giving you any warnings about potential problems.

• Good practice is to be tough on yourself:

gcc -Wall hello.c

• The “-Wall” option tellsgcc to reportall warningsto anything it finds
that is potentially wrong and non ANSI compliant.

• Having the compiled program ina.out is not always helpful:

gcc -o hello hello.c

• The-o option tellsgcc to place the compiled object file in the named
file rather thana.out

COMP1917 c©UNSW, 2012

COMP1917 14s2 Introduction 17

Compiling with dcc

Tip: if you are having trouble tracking down some nasty bugs in your

code, try compiling it withdcc instead ofgcc. dcc does the same job

asgcc, but it does more checking for memory overlaps, etc. and will

(hopefully) help you to find and fix the nasty bugs.

COMP1917 c©UNSW, 2012

COMP1917 14s2 Introduction 18

Breakdown of Hello World

// include standard library defs and functions

#include <stdio.h>

int main(void) // function and entry point

{

// library call to print string constant

printf("Hello, World!\n");

return 0; // tell OS that no error occurred

}

COMP1917 c©UNSW, 2012

COMP1917 14s2 Introduction 19

Key Points

• Functions(subroutines) can be called anything except “main ”,

which is special.

• main is where the program starts executing.

• There must be one (and only one)main

• Functions can have parameters (printf) or no parameters (main).

• Curly brackets “{ }” are used to enclosestatementsin a function.

• A function can be called by naming it in a statement.

• Each statement is terminated by a semicolon “;”

COMP1917 c©UNSW, 2012

COMP1917 14s2 Introduction 20

Key Points cont.

• Comments are denoted by “//” or with a pair of “/*” and “*/”.

• “//” comments do not extend beyond the end of line.

• Comments between “/*” and “*/” can span multiple lines.

Example:

/* This is a library function that

is defined in the header file stdio.h */

printf("Hello World\n"); // this calls the function

COMP1917 c©UNSW, 2012

COMP1917 14s2 Introduction 21

Basic Structure of a C Program

// include files

// global definitions

// global variables

// function definitions

int f(int x)

{

// local variables

// body of function

return(...);

}

...

...

// main function

int main()

{

// local variables

// body of main function

return 0;

}

COMP1917 c©UNSW, 2012

