
COMP1917 14s2 19. Sorting and Efficiency 2

Efficiency

As well as asking whether our programs areeffective, we also need to

consider whether they areefficient.

When you click a button on a Web page, you are much happier if your

request is processed in two seconds as opposed to, say, two minutes.

When we write a program, it is legitimate to ask:

� can this program be made to run more efficiently?

� can a new program be written which achieves the same result more

efficiently? (i.e. using less time, or less memory)

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917: Computing 1

19. Sorting and Efficiency

Reading: Moffat, Section 12.1,12.6

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 19. Sorting and Efficiency 3

Response Delayed is Response Denied

It is possible to write a program which would, in theory, choose a perfect

chess move by exhaustively searching all possible future move sequences,

or break the security of an Internet financial transaction byexhaustively

searching all possible cryptographic “keys”.

However, such a program would take an exponentially long time to run

(perhaps longer than the age of the universe).

We consider these transactions to be secure not because it isabsolutely

impossible to break them, but because it ispracticallyimpossible in the

sense that it would take an extremely long time to do so.

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 19. Sorting and Efficiency 1

Overview

� Efficiency

� Sorting

� SelectionSort

� MergeSort

� Analysis

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 19. Sorting and Efficiency 6

Sorting — Illustration

5

0

0

1

1

2

2

3

3

4

4

5

5

1 2 3 4 5 6

Sort

3 6 14 Initial array

Sorted array

2

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 19. Sorting and Efficiency 4

Sorting

� Aim: rearrange a sequence of items so they are organized in

non-decreasing order by key

� Advantages

◮ sorted sequence can be searched efficiently

◮ items with equal keys are located together

� The problem of sorting

◮ naive approaches lead to very slow algorithms

◮ careful design can lead to efficient solutions

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 19. Sorting and Efficiency 7

Sorting Algorithms

� Slow sorting algorithms

◮ SelectionSort

◮ InsertionSort

◮ BubbleSort

� Fast sorting algorithms

◮ MergeSort

◮ HeapSort

◮ QuickSort

We will only discuss SelectionSort and MergeSort in detail.

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 19. Sorting and Efficiency 5

Sorting — Nature of the Problem

� Input: (unsorted) sequence of items stored in a data structure

(e.g., array, linked list, etc.)

� Output:sequence of items sorted in non-decreasing order

� We shall consider the input to be an array consisting ofn unsorted

items (integers) in cells 0. . . n−1 and the output to be in the same

array cells 0. . . n−1 but in sorted order

� By modifying the way in which we compare items it is quite

straightforward to extend these algorithms to work with other types

of items: floating-point numbers, strings, structs, etc.

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 19. Sorting and Efficiency 10

SelectionSort

3 6 1425

2

43

1 2 3 4 5 6

1 2 3 4 6 5

1 256 34

1 5 46 3

1 2 6 5

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 19. Sorting and Efficiency 8

SelectionSort

� First scan the array to find the minimum item, and move it to thefront

by swapping it with whatever item was previously there.

� Next, find the minimum of the remainingn−1 items and “swap” it

into the 2nd position of the array.

� Continue in this manner – finding the 3rd, 4th, 5th, etc. item and

“swapping” each item into its correct position when it is found.

� Repeat this for all items, until the entire array is sorted.

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 19. Sorting and Efficiency 11

Analysis of Algorithms

How can we find out whether this program is efficient or not?

� empirical approach - write the program, run it several timeswith

different input data, and measure the time taken (we will look at this

later).

� theoretical approach - try to count the number of “primitive

operations” performed by the algorithm and assume that each

primitive operation takes about the same amount of time.

� T (n) = running time of algorithm on input of sizen

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 19. Sorting and Efficiency 9

SelectionSort code

void selectionSort(int a[], int n) {

int i, j, min, tmp;

for(i=0; i < n; i++) {

min = i; // initial minimum is first unsorted item

// find index of minimum item

for(j = i+1; j < n; j++)

if(a[j] < a[min])

min = j;

// swap minimum item into place

tmp = a[i];

a[i] = a[min];

a[min] = tmp;

}

}COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 19. Sorting and Efficiency 14

Merging Sorted Sequences

/* merge two sorted arrays a[] and b[] of length r and s

into a single sorted array c[] of length r+s */

void merge(int a[], int r, int b[], int s, int c[])

{
int i=0, j=0, k=0;

while((i < r)&&(j < s)) {

if(a[i] < b[j]) // transfer whichever item is smaller

c[k++] = a[i++];

else

c[k++] = b[j++];
}

while(i < r)

c[k++] = a[i++]; // copy any remaining items from a[]

while(j < s)

c[k++] = b[j++]; // copy any remaining items from b[]
}
COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 19. Sorting and Efficiency 12

SelectionSort – Analysis

� Consider sorting a sequence ofn items:

◮ 1st time we execute outer loop, need to comparen items

◮ 2nd time we execute outer loop, need to comparen−1 items

◮ . . .

◮ n th time we execute outer loop, need to compare only one item

� Summing this sequence:

T (n)≈ n+(n−1)+(n−2)+ · · ·+1=
n

∑
k=1

k =
n(n+1)

2
≃ (

n2

2
)

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 19. Sorting and Efficiency 15

Analysis

Question:

How do we know that this code will run in time proportional to

r+ s?

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 19. Sorting and Efficiency 13

Key Idea: Merging Sorted Sequences

We will now discuss a more efficient sorting algorithm known as

MergeSort.

The key idea is that two already sorted sequences of lengthr ands can be

mergedinto a single sorted sequence of lengthr+ s in time proportional

to r+ s.

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 19. Sorting and Efficiency 18

MergeSort

The strategy for MergeSort is this:

� first make sure that, for each successive “pair” of items, thefirst item

of the pair is smaller than the second item.

� next, merge each “pair” of sorted pairs into a sorted sequence of 4

items

� continue in this way, merging sorted sequences of 4 items into sorted

sequences of 8, 16, 32, 64, etc. items

� keep going until the “sorted sequence size” is large enough to fill the

entire array.

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 19. Sorting and Efficiency 16

Analysis

Answer:

� there are three while loops

� whenever a statment inside one of the while loops is executed,

eitheri or j will be incremented.

� in the beginning,i and j are both equal to zero

� In the end,i is equal tor and j is equal tos

� therefore, a total ofr+ s “statements” have been executed

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 19. Sorting and Efficiency 19

MergeSort code

void MergeSort(int a[], int n)

{
int *c = (int *)malloc(n * sizeof(int));

int k,r;

for(r = 1; r < n; r = 2*r) {

// merge blocks of length r into blocks of length 2*r

for(k = 0; k + 2*r < n; k = k + 2*r) {

merge(&a[k], r, &a[k+r], r, c);

copy(&a[k], 2*r, c);
}

if(k+r < n) { // merge final blocks of length r, n-(k+r)

merge(&a[k], r, &a[k+r], n-(k+r), c);

copy(&a[k], n-k, c);
}

}
}
COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 19. Sorting and Efficiency 17

Copying Back

Themerge() function transfers the items from the original arraysa[]

andb[] into a new arrayc[]. We will need another function to copy the
items fromc[] back to the original arraya[]:

/* copy m items from array c[] to array a[] */

void copy(int a[], int m, int c[])

{
int k;

for(k=0; k < m; k++) {

a[k] = c[k];
}

}

Clearly, the time taken for the copying is proportional to the number of

items copied.

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 19. Sorting and Efficiency 22

Logarithms

Here is a table showing the value ofr at each iteration of the loop:

iteration 0 1 2 3 4 5 6 7 8 . . . i

block size 1 2 4 8 16 32 64 128 256 . . . r = 2i

Iteration continues untiln = r, son = 2i or i = log2(n)

Therefore, the entire MergeSort algorithm runs in time proportional to

n log2(n)

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 19. Sorting and Efficiency 20

MergeSort

6

2 4 13 6 5

3 6 2 5 1 4

412 3 5 6

1 2 3 4 5

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 19. Sorting and Efficiency 23

Empirical Studies

We can run the two programs using a Unix utility called “time”:

% time ./ssort < r6.in > tmp

real 23m30.284s

user 23m30.036s

sys 0m0.092s

%

The “user” component is the best estimate of how much CPU timethe

program has used for the actual computation.

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 19. Sorting and Efficiency 21

Analysis of MergeSort

� In each iteration of the outer loop, several pairs of blocks are merged

which disjointly cover the entire sequence (i.e. their total length isn).

� Each pair of blocks is merged in time proportional to the sum of their

lengths.

� Therefore, the entire loop is executed in time proportionalto n.

Question:

How many times is the outer loop executed?

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 19. Sorting and Efficiency 26

Top-Down MergeSort

void MergeSort(int a[], int n, int c[])

{
if(n > 1) {

int m = n/2;

MergeSort(a, m, c); // sort 1st half

MergeSort(&a[m], n-m, c); // sort 2nd half

merge(a, m, &a[m], n-m, c);

copy(a, n, c);
}

}

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 19. Sorting and Efficiency 24

Comparison

n 104 105 106 . . . 109

n2/2 5×107 5×109 5×1011 . . . 5×1017

SelectionSort 0.14 sec 14 sec 23.5 min . . . 45 years

n log2(n) 1.3×104 1.7×105 2×107 . . . 3×1010

MergeSort 0.01 sec 0.08 sec 0.84 sec . . . 21 min

These values have all been obtained using thetime utility, except for

those in the last column (which are estimates).

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 19. Sorting and Efficiency 27

Top-Down MergeSort

2

1 2 3 4 5 6

1 2 4

2 4 1

3

3

3

6

6

6

5

5

4

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 19. Sorting and Efficiency 25

Top-Down MergeSort

� What we have described is sometimes calledBottum-upMergeSort.

� There is also aTop-downversion of MergeSort, using adivide and

conquerstrategy:

◮ “split” the unsorted sequence into two halves

◮ sort each half

◮ merge the two halves

� it employs a recursive algorithm as well as the merge function to

accomplish the sorting

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 19. Sorting and Efficiency 28

Top-Down MergeSort – Analysis

� analysing the time complexity of recursive algorithms is more difficult

than for iterative algorithms

� it usually involves solvingrecurrence equations

� using this technique it can be shown that top-down MergeSortalso

runs in time proportional ton log2(n)

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 19. Sorting and Efficiency 29

Summary

� Sorting data is a commonly performed task particularly whendealing

with large amounts of data

� Carefully designed algorithms can greatly improve efficiency

� Efficiency can often be estimated by theoretical analysis before the

algorithm has even been implemented.

COMP1917 c©Alan Blair, UNSW, 2006-2014

