
COMP1917 14s2 18. Machine Language 2

Machine Language Programming

Some useful references for this material:

� J. Glenn Brookshear, “Computer Science: An Overview”, (4thed), Ben-

jamin/Cummings, 1994.

� Andrew S. Tanenbaum, “Structured Computer Organisation” (3rd ed), Prentice-Hall,

1990.

� David Patterson and John Hennessy, “Computer Organization and Design: the

Hardware/Software Interface”, Morgan-Kauffman, 1994.

� Joseph Byrd and Robert Pettus, “Microprocessor Systems”, Prentice Hall, 1993.

� Gerry Kane and Joe Heinrich, “MIPS RISC Architecture”, Prentice Hall, 1992.

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917: Computing 1

18. Machine Language

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 18. Machine Language 3

History of Computer Technology

1940’s

1950’s

First prototypes

First commercial computers

Widespread use in business/defence

Vacuum tubes

Transistors

Integrated circuits

Minicomputers

LSI/VLSI

Microprocessors

RISC

Global Network
1990’s

1970’s

1960’s

1980’s

Impact Hardware
Technology

Software
Technology

Machine language

FORTRAN,COBOL,LISP

Multi−user Operating Systems

Unix and C

Windows, Mouse, Menus

Haskell, Perl, Tcl, VB, OO

HTML, Java, VRML

One constant: the underlying machine model.

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 18. Machine Language 1

Computer Systems

Recall: modern computer systems arelayered.

Raw Machine

Assembly Language

Applications

Operating System
Programming Language

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 18. Machine Language 6

Central Processing Unit

y

Control
Unit

Arith/
Logic
Unit

...

Registers

Processor

M
e
m
o
r

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 18. Machine Language 4

Computer Architecture

Processor Memory

Input

Output

• Processor: control, calculation

• Memory: data & program storage

• Input/output: interface to the world

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 18. Machine Language 7

Processor (CPU)

The processor’s task:

{

Register PC; /* program counter */

forever {

fetch instruction from Memory[PC++];

determine what kind of instruction;

fetch any necessary data;

carry out the specified operation;

}

}

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 18. Machine Language 5

Input/Output Devices

Vast range of devices are interfaced:
Device Read/Write Speed Notes

disks r/w high high-volume storage

tape r/w low high-volume archiving

cd-rom r/o medium storage

display w/o medium CRT, LC, ...

keyboard r/o low

mouse r/o low 1,3-button

other computers r/w varying networks

VR-helmet r/w high games

mechanical r/w low embedded

equipment systems

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 18. Machine Language 10

Simulated Machine Architecture

We will be using a simulator calledmlsim, similar to the one described in

“Computer Science: An Overview” by J. Glenn Brookshear.

� 256 memory cells, with addresses from00 to FF (hexadecimal) each

holding 1 byte (8 bits)

� 16 general-purpose registers (namedR0 to RF) each holding 1 byte

(8 bits)

� also a 1-byte program counter (PC) and a 2-byte instruction register

(IR).

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 18. Machine Language 8

Processor Operations

CPUs typically provide operations for:

• data movement(reg-to-reg, reg-to-mem)

• arithmetic calculation(e.g.+ - * /)

• logical calculation(e.g.&& || !)

• comparison(e.g.==, >, <, >=, <=)

• bit manipulation(e.g.~ & | ^ >> <<)

• program control(goto/branch)

• input/output(read, write)

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 18. Machine Language 11

Machine Language Simulator
Main Memory

0 1 2 3 4 5 6 7 8 9 A B C D E F
0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
1 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
2 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
3 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
4 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
5 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
6 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
7 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
8 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
9 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
A 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
B 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
C 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
D 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
E 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
F 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

R0:00 R1:00 R2:00 R3:00 R4:00 R5:00 R6:00 R7:00 PC:00
R8:00 R9:00 RA:00 RB:00 RC:00 RD:00 RE:00 RF:00 IR:0000

Type one of the following (H for help): M, R, P, C, S, G, F, Q:

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 18. Machine Language 9

From High-level to Low-level Languages

Real machines can’t execute C directly.

Real machines executetheir ownmachine code.

Compile gcc −S

Assemble

Link

hello.s

gcc −c

hello.c

hello

Libraries gcc
−l ...
−o ...

C program source

hello.o

Assembly code

Machine code

Machine code
Simple task

Complex task

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 18. Machine Language 14

Machine Language Instructions

Op Args Description

1 RXY LOAD register R with contents of memory cell whose address is XY.
2 RXY LOAD register R with the bit pattern XY.
3 RXY STOREthe contents of register R in the memory cell with address XY.
4 0RS COPY the bit pattern found in register R to register S.
5 RST ADD the bit patterns in registers S & T as though they are

2’s complement integers, and store the result in register R.
6 RST ADD the bit patterns in registers S & T as though they are

floating point numbers, and store the floating point result inregister R.
7 RST OR the bit patterns in registers S & T and store result in register R.
8 RST AND the bit patterns in registers S & T and store result in register R.
9 RST XOR the bit patterns in registers S & T and store in register R.
A R0X ROTATE the bit pattern in register R one bit to the right X times.
B RXY BRANCH to the instruction located in the memory cell at the address XY

if the bit pattern in register R is equal to the bit pattern in register 0;
otherwise, continue with the normal sequence of execution.

C 000 HALT execution.

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 18. Machine Language 12

Simulator-Program Commands:

Options are as follows:

M Change contents of memory cells.

R Change contents of registers.

P Change contents of program counter.

C Clear memory or registers. (Options will be given.)

S Single step. (Execute a single machine cycle.)

G Go. (Execute until a halt instruction is executed

or until 500 machine cycles have been executed.)

F List file options (to save or retrieve programs).

H Display this help screen.

Q Terminate this simulation program.

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 18. Machine Language 15

Machine Language Examples

14A3 store contents of the memory cell at address A3 into register R4.
20A3 store the value A3 into register R0.
35B1 store the contents of register R5 into memory cell at address B1.
40A4 copy the contents of register RA (R10) into register R4.
5726 add binary values in registers R2 & R6 and store the sum inregister R7.
634E add the bit values in registers R4 and RE (R14) as floating-point numbers

and store the result in register R3.
7CB4 OR the contents of RB (R11) & R4 and store the result in register RC (R12).
8045 AND the contents of registers R4 and R5 and store the result in register R0.
95F3 XOR the contents of RF (R15) & R3 and store the result in register R5.
A403 rotate the contents of register R4 3 bits to the right in acircular fashion.
B43C compare the contents of register R4 with the contents ofregister R0;

if the two are equal, pass control to the instruction at memory address3C;
otherwise, continue execution in its normal sequence.

C000 halt execution.

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 18. Machine Language 13

Machine Language Instructions

� each machine instruction is 2 bytes (16 bits) long

� the first 4 bits comprise the op-code

� the remaining 12 bits make up the arguments or “operands”

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 18. Machine Language 18

XOR Truth Table

� XOR — logical exclusive or

� C operator:̂

x y x ^ y

0 0 0

0 1 1

1 0 1

1 1 0

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 18. Machine Language 16

AND Truth Table

� AND — logical and

� C operator:&

x y x & y

0 0 0

0 1 0

1 0 0

1 1 1

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 18. Machine Language 19

Machine Language Programming

For this simple machine each complete instruction is a 4-digit

(hexadecimal) number, stored across two memory locations.

Why don’t we program in Machine Language?

Here is an example of a simple machine-language program,

starting at address10:

234B121C5023302AC0003A

To make any sense out of this at all, we need to group the numbers into

pairs, and add extensive in-line comments...

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 18. Machine Language 17

OR Truth Table

� OR — logical inclusive or

� C operator:|

x y x | y

0 0 0

0 1 1

1 0 1

1 1 1

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 18. Machine Language 22

Negation

How do we compute the negative of a number?

Step 1:XOR with FF (1’s complement)

Step 2:ADD 1 (2’s complement)

Note: for floating-point numbers, we only need to change the first bit,

by XOR-ing with 80.

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 18. Machine Language 20

Machine Language Programming

Address Content Description

10 234B ; Load (hex) value 4B into R3

12 121C ; Load value at loc. 1C into R2

14 5023 ; Add R2, R3 as integers, put result into R0

16 302A ; Store value in R0 into loc. 2A

18 C000 ; Halt
. . . .

1C 3A ; Data value

If:

� m denotes value in address1C

� n denotes value in address2A

then the C code corresponding to the

above program (using decimal equiva-

lents of hex. numbers):

int m = 58, n;

n = m + 75;

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 18. Machine Language 23

Subtraction

Using the instruction set for this simple machine, write a machine-

language routine equivalent to the C code:

int m;

int n;

int k;

k = m - n;

Assume thatm, n andk are stored in memory locations10, 12 and14,

respectively, and that program execution begins from location 20.

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 18. Machine Language 21

Addressing Modes

This program illustrates the difference betweenimmediateanddirect

addressing.

� The first instruction234B simply loads the specified argument4B into

R3 (immediate addressing).

� The second instruction121C goes to memory location1C, fetches

whatever is stored there, and loads it intoR2 (direct addressing)

� Some machines also allowindirectaddressing, where the machine

goes to the specified memory location to get an address, then fetches

the value at that address.

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 18. Machine Language 26

Multiplication

Allocate memory and registers:

� Loc. 10 for variablem

� Loc. 12 for variablen

� R0 for constant 3

� R1 for constant 1

� R2 for counteri

� R3 for value ofm

� R4 for accumulating value ofn

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 18. Machine Language 24

Subtraction Program

Address Contents Description

10 38 ; Data m

12 15 ; Data n

14 00 ; Result k

.. ..

20 1310 ; LOAD val at loc.10 to R3 // m

22 1412 ; LOAD val at loc.12 to R4 // n

24 2101 ; LOAD 01 to R1

26 22FF ; LOAD FF to R2

28 9524 ; XOR R2,R4; result to R5

2A 5515 ; ADD R1,R5; result to R5

2C 5535 ; ADD R3,R5; result to R5

2E 3514 ; STORE R5 in loc.14 // k

30 C000 ; HALT

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 18. Machine Language 27

Multiplication Program

Address Contents Description

10 12 ; Data m

12 00 ; Result n

20 1310 ; Load val at loc.10 to R3 // m

22 2003 ; Load 03 to R0 (multiplier)

24 2101 ; Load 01 to R1 (incrementer)

26 2200 ; Load 00 to R2 // i = 0

28 2400 ; Load 00 to R4 // n = 0

2A B232 ; If (R2 == R0) branch PC to 32

2C 5443 ; Add R4,R3; result to R4 // n = n + m

2E 5221 ; Add R2,R1; result to R2 // i = i + 1

30 B02A ; Jump PC to 2A

32 3412 ; Store R4 in loc.12 // n

34 C000 ; Halt

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 18. Machine Language 25

Multiplication

Write the machine-language coding for this model machine that is

equivalent to the C statements:

int m = 12, n;

n = 3 * m;

Alternative form: This machine has only one arithmetic operation –ADD

(in 2 forms). So we first convert the C code to:

int m = 12, n=0, i=0;

while (i < 3) {

n = n + m;

i = i + 1;

}COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 18. Machine Language 30

Exercise

Using the machine-language instruction set for this model machine,

describe the machine operations required to execute the following

fragment of C coding:

int a, b, min;

min = b;

if(a < b) {

min = a;

}

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 18. Machine Language 28

Exercise

Some variations:
What changes are needed to code:

� n = a * m;

� n = m ^ a;

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 18. Machine Language 29

Other Bit-wise operations

How do we compute “sign of a number”?

AND with 80

the result is:

80, if n < 0

00, if n ≥ 0

What happens if an ASCII lower-case letter isAND-ed withDF ?

What happens if an ASCII upper-case letter isOR-ed with20 ?

COMP1917 c©Alan Blair, UNSW, 2006-2014

