COMP1917: Computing 1

18. Machine Language

COMP1917 (©Alan Blair, UNSW, 2006-2014
COMP1917 14s2 18. Machine Language

Machine Language Programming

Some useful references for this material:

J. Glenn Brookshear, “Computer Science: An Overview”, (dt), Ben-
jamin/Cummings, 1994,

Andrew S. TanenbaumStructured Computer Organisation” (3rd ed) Prentice-Hall,
1990.

David Patterson and John Hennessypfhputer Organization and Design: the
Hardware/Software Interface”, Morgan-Kauffman, 1994.

Joseph Byrd and Robert Pettubjitroprocessor Systems’, Prentice Hall, 1993.
Gerry Kane and Joe HeinrichiMiPSRISC Architecture’, Prentice Hall, 1992.

COMP1917 (©Alan Blair, UNSW, 2006-2014

COMP1917 14s2

18. Machine Language

Computer Systems

Recall: modern computer systems &rgered

COMP1917

COMP1917 14s2

Applications

Programming Langua
Operating System

Assembly Language

Raw Machine

(©Alan Blair, UNSW, 2006-2014

18. Machine Language

History of Computer Technology

1940's

1950's

1960's

1970's

1980's

1990's

Impact Hardware Software
Technology Technology

First prototypes
Vacuum tubes
Machine language
First commercial computers
FORTRAN,COBOL,LISP
Transistors

use in busir ce

Multi-user Operating Syster
Integrated circuits

Minicomputers
Unix and C
LSIVLSI
Microprocessors
Windows, Mouse, Menus
RISC
Haskell, Perl, Tcl, VB, 0O
Global Network
HTML, Java, VRML

One constant: the underlying machine model.

COMP1917

(©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 18. Machine Language 4 COMP1917 14s2 18. Machine Language

Computer Architecture Input/Output Devices

Vast range of devices are interfaced:

Device Read/Write Speed Notes
put disks riw high high-volume storage
tape riw low high-volume archiving
Processor | == Memory cd-rom rlo medium storage
ouput display w/o medium CRT, LC, ...
keyboard r/o low
mouse r/lo low 1,3-button
e Processor: control, calculation other computers r/w varying networks
e Memory: data & program storage VR-helmet riw high games
e Input/output: interface to the world mec-hanical w low embedded
equipment systems

COMP1917

(©Alan Blair, UNSW, 2006-2014 COMP1917

(©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 18. Machine Language 6 COMP1917 14s2 18. Machine Language

Central Processing Unit Processor (CPU)

The processor’s task:

Processor {
Registers Register PC; /* program counter */
Arith/] l\g
Control Logic m forever {
unit Unit ;] (r) fetch instruction from Memory [PC++];
] y determine what kind of instruction;
fetch any necessary data;
carry out the specified operation;
3
3

COMP1917

(©Alan Blair, UNSW, 2006-2014 COMP1917

(©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 18. Machine Language 8 COMP1917 14s2 18. Machine Language

Processor Operations From High-level to Low-level Languages

CPUs typically provide operations for: Real machines can't execute C directly.

Real machines executieeir ownmachine code.

C program source

e data movemenfreg-to-reg, reg-to-mem)

e arithmetic calculatiore.g.+ - * /) heuo_\i
e logical calculatione.g.&& |1 1) gcc,s Conplecase
e comparisone.g.==, >, <, >=, <=) hellos \ assemby code

Assemble) gec ¢

e bit manipulatione.g.” & | =~ >> <<)

Simple task
hello.o

Libraries gcc 0.
-l

hello

Machine code

e program contro(goto/branch)

e input/output(read, write)

Machine code

COMP1917 (©Alan Blair, UNSW, 2006-2014 COMP1917 (©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 18. Machine Language 10 COMP1917 14s2 18. Machine Language

Simulated Machine Architecture Machine Language Simulator

Main Memory
o 1 2 3 4 5 6 7 8 9 A B C D E F
00 00 00 00 00 00O 00 OO0 OO 00 00 00 00 00 00 00
00 00 00 00 00O 00 00 00 OO 00 00 OO 00 00 00 00
00 00 00 00 00O 00O 00 00O OO 00 00 00 00 00 00 00
00 00 00 00 00 00O 00 00 OO 00 00 OO0 00 00 00 00
00 00 00 00 00 00O 00 00 OO 00 00 OO0 00 00 00 00
00 00 00 00 00 00 00 00 OO 00 00 OO 00 00 00 00
00 00 00 00 OO0 00 00 00 OO 00 00 00 00 00 00 00
00 00 00 00 00 00 00 OO0 OO 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 OO0 00 00 00 00 00 00 00
00 00 00 00 00 00 00 OO0 OO 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 OO 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00O OO 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 OO 00 00 OO 00 00 00 00
00 00 00 00 00O 00 00 00O OO 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 OO 00 00 OO 00 00 00 00
00 00 00 00 00 00O 00 OO0 OO 00 00 00 00 00 00 00

We will be using a simulator callesllsim, similar to the one described in
“Computer Science: An Overview” by J. Glenn Brookshear.

256 memory cells, with addresses fra@mto FF (hexadecimal) each
holding 1 byte (8 bits)

16 general-purpose registers (nank®do RF) each holding 1 byte
(8 bits)

also a 1-byte program counterd) and a 2-byte instruction register
(IR).

THOQWE OO~ WNFO

COMP1917

(©Alan Blair, UNSW, 2006-2014

RO:00
R8:00

Type one of the following (H for help):

COMP1917

R1:00 R2:00 R3:00 R4:00
R9:00 RA:00 RB:00 RC:00

R5:00 R6:00 R7:00 PC:00
RD:00 RE:00 RF:00 IR:0000

M’ R’ P’ C’ S’ G’ F’ Q:

(©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 18. Machine Language

Simulator-Program Commands:

Options are as follows:

M Change contents of memory cells.
R Change contents of registers.
P Change contents of program counter.
C Clear memory or registers. (Options will be given.)
S Single step. (Execute a single machine cycle.)
G Go. (Execute until a halt instruction is executed
or until 500 machine cycles have been executed.)
F List file options (to save or retrieve programs).
H Display this help screen.

Q Terminate this simulation program.

COMP1917 (©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 18. Machine Language

Machine Language Instructions

12 COMP1917 14s2 18. Machine Language

Machine Language Instructions

each machine instruction is 2 bytes (16 bits) long
the first 4 bits comprise the op-code

the remaining 12 bits make up the arguments or “operands”

COMP1917 (©Alan Blair, UNSW, 2006-2014

14 COMP1917 14s2 18. Machine Language

Machine Language Examples

Op Args Description 14A3 store contents of the memory cell at address A3 intstegR4.
1 RXY LOAD register R with contents of memory cell whose address is XY. 20A3 store the value A3 into register RO.
2 RXY LOAD register R with the bit pattern XY. 35B1 store the contents of register R5 into memory cell atesiiB1.
3 RXY STOREthe contents of register R in the memory cell with address XY. 40A4 copy the contents of register RA (R10) into register R4.
4 ORS copvthe bit pattern found in register R to register S. 5726 add binary values in registers R2 & R6 and store the susgister R7.
5 RST ADD the bit patterns in registers S & T as though they are 634E add the bit values in registers R4 and RE (R14) as flogtiigt numbers
2's complement integers, and store the result in register R. and store the result in register R3
6 RST ADD the bit patterns in registers S & T as though they are 9 ’ i .
floating point numbers, and store the floating point resulegister R. 7CB4 oRthe contents of RB (R11) & R4 and store the result in registei(R12).
7 RST ORthe bit patterns in registers S & T and store result in regRte 8045 AND the contents of registers R4 and R5 and store the resultisteedRO.
8 RST AND the bit patterns in registers S & T and store result in regRte 95F3 XxOR the contents of RF (R15) & R3 and store the result in register R
i RST XOR thetﬁlt pb{itttergs in _reg|st_e:s SR& T agfi f“?{;e in rﬁ?')?tter R. A403 rotate the contents of register R4 3 bits to the rightdireular fashion.
ROX ROTATE the DIt pattern In register R one bit to the rig IMes. B43C compare the contents of register R4 with the contentsgi$ter RO;
B RXY BRANCHto the instruction located in the memory cell at the addregs X it th ptvv | 9 trol to the instruction at ad ’sac
if the bit pattern in register R is equal to the bit patterndgister 0; It the two are equal, pass control to the Instruction at mgracdressse,
otherwise, continue with the normal sequence of execution. otherwise, continue execution in its normal sequence.
C 000 HALT execution. C000 halt execution.

COMP1917 (©Alan Blair, UNSW, 2006-2014

COMP1917 (©Alan Blair, UNSW, 2006-2014

13

15

COMP1917 14s2 18. Machine Language

AND Truth Table

AND — logical and

C operator¥

O |O | O | &

= | = | O | O
= Ok | O |<

COMP1917

COMP1917 14s2 18. Machine Language

XOR Truth Table

XOR — logical exclusive or

C operator:”

= | = | O | O
| O |+ | Ol
O |+ |+ | O

COMP1917

(©Alan Blair, UNSW, 2006-2014

(©Alan Blair, UNSW, 2006-2014

16

18

COMP1917 14s2

COMP1917 14s2

18. Machine Language

OR Truth Table

OR — logical inclusive or

C operator:|

= | = | O | O
= | O |- | O |
|~ |~]|O

COMP1917

18. Machine Language

Machine Language Programming

(©Alan Blair, UNSW, 2006-2014

For this simple machine each complete instruction is a #4-dig
(hexadecimal) number, stored across two memory locations.

Why don’t we program in Machine L anguage?

Here is an example of a simple machine-language program,

starting at addresso:

234B121C5023302AC0003A

To make any sense out of this at all, we need to group the numirer

pairs, and add extensive in-line comments...

COMP1917

(©Alan Blair, UNSW, 2006-2014

17

19

COMP1917 14s2 18. Machine Language 20 COMP1917 14s2 18. Machine Language 21

Machine Language Programming Addressing Modes

Address Content Description

10 234B ;Load (hex) value 4B into R3 This program illustrates the difference betweemmediateanddirect
12 121C ; Load value at loc. 1C into R2 addressing.

14 5023 ; Add R2, R3 as integers, put result into RO L

16 302A : Store value in RO into loc. 2A The first instructior34B simply loads the specified argumei® into
18 C000 : Halt R3 (immediate addressing).

10 3A . Data value The second instruction21C goes to memory locationc, fetches

whatever is stored there, and loads it iRto(direct addressing)
then the C code corresponding to the

If: above program (using decimal equiva- Some machines also allowdirectaddressing, where the machine
m denotes value in address lents of hex. numbers): goes to the specified memory location to get an address, ¢bemes
n denotes value in addregs int m = 58, n; the value at that address.
n=m+ 75;
COMP1917 (©Alan Blair, UNSW, 2006-2014 COMP1917 (©Alan Blair, UNSW, 2006-2014
COMP1917 14s2 18. Machine Language 22 COMP1917 14s2 18. Machine Language 23
Negation Subtraction
How do we compute the negative of a number? Using the instruction set for this simple machine, write achiae-
Step 1:XOR with FF (1's complement) language routine equivalent to the C code:
Step 2:ADD 1 (2's complement) int m;
int n;
Note: for floating-point numbers, we only need to change tisé it, int k;

by xoRr-ing with 80.

k=m- n;

Assume thai, n andk are stored in memory location®, 12 andi14,
respectively, and that program execution begins from looa0.

COMP1917 (©Alan Blair, UNSW, 2006-2014 COMP1917 (©Alan Blair, UNSW, 2006-2014

COMP1917 14s2

18. Machine Language 24

Subtraction Program

Address Contents Description

10 38 ;
12 15 H
14 00 H
20 1310 ;
22 1412 H
24 2101 H
26 22FF ;
28 9524 H
2A 5515 5
2C 5535 H
2F 3514 ;
30 C000 H

COMP1917

COMP1917 14s2

Multiplication

Data m
Data n
Result k

LOAD val at loc.10 to R3 // m
LOAD val at loc.12 to R4 // n
LOAD 01 to R1
LOAD FF to R2

XOR R2,R4; result to RS

ADD R1,R5; result to Rb5

ADD R3,R5; result to R5
STORE R5 in loc.14 // k
HALT

(©Alan Blair, UNSW, 2006-2014

18. Machine Language 26

Allocate memory and registers:

Loc. 10 for variablen

Loc. 12 for variablen

RO for constant 3
R1 for constant 1
R2 for counteri

R3 for value ofm

R4 for accumulating value af

COMP1917

(©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 18. Machine Language 25

Multiplication

Write the machine-language coding for this model machira i
equivalent to the C statements:

int m = 12, n;

n =3 % m;

Alternative form: This machine has only one arithmetic operatioxbp
(in 2 forms). So we first convert the C code to:

int m = 12, n=0, i=0;

while (i < 3) {
n=mn+ m;
i=1+1;

-
COM£1917 (©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 18. Machine Language 27

Multiplication Program

Address Contents Description

10 12 ; Data m

12 00 ; Result n

20 1310 ; Load val at loc.10 to R3 // m

22 2003 ; Load 03 to RO (multiplier)

24 2101 ; Load 01 to R1 (incrementer)

26 2200 ; Load 00 to R2 // i=

28 2400 ; Load 00 to R4 // n =

2A B232 ; If (R2 == RO) branch PC to 32

2C 5443 ; Add R4,R3; result toR4 // n=n+m
2E 5221 ; Add R2,R1; result toR2 // i =1i+ 1
30 BO2A ; Jump PC to 2A

32 3412 ; Store R4 in loc.12 // n

34 C000 ; Halt

COMP1917 (©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 18. Machine Language 28 COMP1917 14s2 18. Machine Language 29

Exercise Other Bit-wise operations
Some variations: How do we compute “sign of a number”?
What changes are needed to code: AND With 80
n=a*m the result is:
n=m-"a; 80,ifn<0
00,ifn>0

What happens if an ASCII lower-case letternisD-ed withDF ?

What happens if an ASCII upper-case letteoised with20 ?

COMP1917 (©Alan Blair, UNSW, 2006-2014 COMP1917 (©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 18. Machine Language 30

Exercise

Using the machine-language instruction set for this modathine,
describe the machine operations required to execute thmvioh
fragment of C coding:

int a, b, min;
min = b;

if(a<b) {

min = a;

COMP1917 (©Alan Blair, UNSW, 2006-2014

