COMP1917 14s2 13. Structures

Overview
COMP1917: Computing 1
13. Structures Type Definitions
Booleans
Reading: Moffat, Chapter 8. Structure Notation

Passing Structures as Parameters
Pointers to Structures
Nested Structures

Returning Structures

COMP1917 (©Alan Blair, UNSW, 2006-2014 ComMP1917 ©Alan Blair, UNSW, 2006-2014
COMP1917 14s2 13. Structures 2 COMP1917 14s2 13. Structures
Type Definitions Using typedef for Boolean variables

#define TRUE 1
L #define FALSE O
We can use the keywortlypedef to make our own type definitions:
typedef int Boolean; typdef int Boolean;

This means variables can be declare8@sl ean but they will actually be

int main(void) {
of typeint.

Boolean keep_going = TRUE;
while(keep_going) {
keep_going = FALSE;

if(..o) A
keep_going = TRUE;

}
}

COMP1917 (©Alan Blair, UNSW, 2006-2014 ?OMP1917 (©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 13. Structures 4 COMP1917 14s2 13. Structures
Using typedef to adjust precision Structured Data Types

typedef float Floating;

A structure is a collection of variables, perhaps of diffeérypes, grouped
Floating my_atanh(Floating x) together under a single name.
{ Structures:

Floating u = (1.0 - x)/(1.0 + x);
help to organise complicated data into manageable entities

return(-0.5 * log(u)); expose the connection between data within an entity

}

If we later decide we need more precision, we can change to:

are defined using thetruct keyword.

typedef double Floating;

COMP1917 (©Alan Blair, UNSW, 2006-2014 COMP1917 (©Alan Blair, UNSW, 2006-2014
COMP1917 14s2 13. Structures 6 COMP1917 14s2 13. Structures
Combining typedef and struct Accessing Members of a Structure
Note: we use the convention that the name of the defined tyihe isame
as thestruct modifier, but with the first letter capitalized. Note that defining the structure itself does not allocateraagnory.
typedef struct date Date; We need to declare a variable in order to allocate memory:
struct date { Date christmas;
int day; The components of the structure can be accessed using tHeftvator
int month;
int year; christmas.day = 25;
}; // don’t forget this semi-colon! christmas.month = 12;
christmas.year = 2014;

We can then declare a structured variable like this:

Date christmas;

COMP1917 (©Alan Blair, UNSW, 2006-2014 COMP1917 (©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 13. Structures

Assigning a Structure

Unlike arrays, it is possible to copy all components of acttite in a
single assignment:

my_birthday = christmas;
It is not possible to compare all components with a single comparison
if (my_birthday == christmas) // this is NOT allowed!

If you want to compare two structures, you need to write ationco
compare them component-by-component and decide whetgatie
“the same”.

COMP1917 (©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 13. Structures

Pointers to Structures

If a function needs to modifiy components within the struefur if we
want to avoid the inefficiency of copying the entire struetuwve can
instead pass pointerto the structure as a parameter:

int scan_date(Date *d, FILE *fp)

{

return(fscanf(fp,"%d/%d/%4",
&((*d) .day), &((*d).month), &((*d).year)));

}

void increment(Date *d)

{

(*d) .year++;

}

COMP1917 (©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 13. Structures 9

Passing Structures as Parameters

A structure can be passed as a parameter to a function:

void print_date(Date d)

{

printf("%d/%d/%d\n", d.day, d.month, d.year);
}

Because parameters in C are “call-by-value”, a copy will lzslenof the
entire structure, and only this copy will be passed to thetion.

COMP1917 (©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 13. Structures 11

Arrow Notation

Note that the brackets are necessary, becatusakes precedence over

*(d.year)++; // this will cause an error, because d is
// not a structure and year is not a pointer
xd.year++; // same as above, by operator precedence
(*d) .year++; // correct usage

In order to avoid this confusion, the “arrow” notation is yied as an
alternative:

d->year++; // same as (*d).year++

COMP1917 (©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 13. Structures

Program using Structures

{

Date christmas;

christmas.day 25;
12;

2014;

christmas.month

christmas.year

printf("This christmas is ");

print_date(christmas);

increment (christmas);
printf("Next christmas is ");

print_date(christmas);

}

COMP1917 (©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 13. Structures

Returning Structures

The return type of a function can be a structure, or a poiotardtructure

Speeding * scan_speeding(FILE *fp)
{ Speeding * new_speeding =
(Speeding *)malloc(sizeof(Speeding));
if (new_speeding != NULL) {
if((scan_date(&new_speeding->date, fp))
&&(scan_time(&new_speeding->time, fp))
&& fscanf(fp,"}1f", &new_speeding->speed)
&% fgets(new_speeding->plate, MAX_PLATE, fp)) {

return(new_speeding) ;

}

COMP1917 (©Alan Blair, UNSW, 2006-2014

12

14

COMP1917 14s2

COMP1917 14s2

13. Structures

Nested Structures

One structure can be nested inside another

typedef struct date Date;
typedef struct time Time;
typedef struct speeding Speeding;

struct date { int day, month, year; };
struct time { int hour, minute; };
struct speeding {

Date date;

Time time;

double speed;

char plate[MAX_PLATE];

s

COMP1917

13. Structures

Sample Program

Study the sample prograspeeding.c
which combines:

arrays
pointers

memory allocation
strings

structures

files

command-line arguments

COMP1917

(©Alan Blair, UNSW, 2006-2014

(©Alan Blair, UNSW, 2006-2014

13

15

