
COMP1917 14s2 11. Writing a Makefile 2

Building Your First Makefile

Let’s assume that you have three C files and two Header files:

• file1.c, file2.c andfile3.c; and

• header1.h andheader2.h

Let’s assume that all three C files depend on information that’s in

header1.h, while onlyfile1.c andfile2.c require information that’s

in header2.h

Let’s assume that the executable will be calledexample.

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917: Computing 1

11. Writing a Makefile

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 11. Writing a Makefile 3

Building Your First Makefile cont.

Your source file dependency now looks like this:

header1.h header2.hheader1.h header2.hheader1.h

+ + +

file1.c file2.c file3.c

↓ ↓ ↓

file1.o file2.o file3.o

↓ ↓ ↓

example

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 11. Writing a Makefile 1

Introduction

make is a utility that is used by programmers to manage the processof

recompiling their code.

The actions of themake utility is governed by aMakefile, which

describes:

• the source files that are needed to generate the “target”; and

• how a “target” is to be generated;

When invoked,make automatically determines which files need to be

recompiled and issues the commands needed to recompile them.

Themake utility may be used to describe any task where some files must

be updated automatically from others whenever the others change.

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 11. Writing a Makefile 6

Building Your First Makefile cont.

At this point it does not know how to create the “.o” files so let’s tell it
how:

our target

example: file1.o file2.o file3.o

gcc -o example file1.o file2.o file3.o # <-- action

file1.o: file1.c header1.h header2.h

gcc -Wall -c file1.c

file2.o: file2.c header1.h header2.h

gcc -Wall -c file2.c

file3.o: file3.c header1.h

gcc -Wall -c file3.c

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 11. Writing a Makefile 4

Building Your First Makefile cont.

Create a file calledMakefile and let’s define the goal/target:

our target

example: file1.o file2.o file3.o

Things to note:

• Comments start with the “#” character.

• A target (in this caseexample) is on a newline followed by a “:” and

followed by the files that the target is dependent on.

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 11. Writing a Makefile 7

Building Your First Makefile cont.

Things to note:

• The syntax is the same as for the rule “example”.

• The action is executed if there are no additional rules to satisfy

(i.e. things to the right of the “:”).

• The dependencies for each “.o” file is as per table on the previous

slide.

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 11. Writing a Makefile 5

Building Your First Makefile cont.

Create a file calledMakefile and let’s define the goal/target:

our target

example: file1.o file2.o file3.o

gcc -o example file1.o file2.o file3.o # <-- action

Things to note:

• The action is always on a newline and must be indented with a TAB.

• The action is executed if there are no additional rules to satisfy for

file1.o, file2.o andfile3.o

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 11. Writing a Makefile 10

Using Variables

You’ll see that we’ve replaced all actual references togcc and the standard

“-Wall” compilation flag with the variable$(CC) and$(CFLAGS)

Benefits:now if we decide to change the compiler or compilation flags,

we only have to change it in one place, i.e. at the top of theMakefile.

The expression:

CSRC = file1.c file2.c file3.c

OBJ = $(CSRC:.c=.o)

means thatOBJ = file1.o file2.o file3.o is built by replacing the

“.c” suffixes of the files in $(CSRC) with the suffix “.o”

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 11. Writing a Makefile 8

Building Your First Makefile cont.

With what’s defined so far, you’ve got all the dependencies necessary to

build example.

make is smart enough to work out thatexample is the default target so

when you type the commandmake you’ll get

% make

gcc -Wall -c file1.c

gcc -Wall -c file2.c

gcc -Wall -c file3.c

gcc -o example file1.o file2.o file3.o

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 11. Writing a Makefile 11

Pattern Rules

To make life even easier,make has a number of “Pattern Rules”, like this:

%o:%c

$(CC) $(CFLAGS) -c $<

This rule simply says that a fileX.o that’s dependent on the fileX.c will

have the stated action applied.

The variable $< references the first prerequisite in the rule, i.e.X.c

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 11. Writing a Makefile 9

Using Variables

You’ll notice that there’s a lot of repetition in theMakefile. Where there

is lots of repetition, there’s a greater chance of being inconsistent.

It is therefore useful to be able to define a value in one place but reference

the definition in lots of places.

You do this by introducing a “variable” and defining its value, for example:

CC = gcc

CFLAGS = -Wall

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 11. Writing a Makefile 14

Pattern Rules cont.

When you have multiple targets in oneMakefile, you need to make

explicit which rule you wish to apply whenmake is run without any

rules/targets being specified.

This is done by stating what the “default” rule should be, i.e.:

default: example

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 11. Writing a Makefile 12

Pattern Rules cont.

With this general pattern rule, it is now possible to remove the individual

compile commands fromfile1.o, file2.o andfile3.o, replacing

them with this:

HSRC = header1.h hearder2.h

%o:%c $(HSRC)

$(CC) $(CFLAGS) -c $<

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 11. Writing a Makefile 15

Additional Reading

What I have shown so far is just an overview ofmake, it has far more

features than I have mentioned here.

You can get more information by typing:

% info make

on any of the CSE computers in the labs.

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 11. Writing a Makefile 13

Adding More Targets

Sometimes you need more than one default target in a project.

For example, you might want to add to theMakefile a target that cleans

up all the temporary files that a compilation generates.

Additional targets

.PHONY: clean

clean:

rm -f $(OBJ)

The keyword.PHONY remindsmake thatclean is not the name of a file

to be generated by compilation; it is simply a command to instigate some

other action. To specify this new target, you say:

% make clean

COMP1917 c©Alan Blair, UNSW, 2006-2014

