
COMP1917 14s2 9. Pointers 2

Memory Structure

In order to fully understand how pointers are used to reference data in

memory, here’s a few basics on memory organisation.

0xFFFF High Memory

0xFFFE

...

0x0001

0x0000 Low Memory

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917: Computing 1

9. Pointers

Reading: Moffat, Chapter 6.

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 9. Pointers 3

Memory

� computer memory is a large array of consecutive data cells orbytes

� a char normally occupies one byte, ashort 2 bytes, anint or

float 4 bytes, adouble 8 bytes, etc.

� when a variable is declared, the operating system finds a place in

memory to store the appropriate number of bytes.

� if we declare a variable calledk, the place wherek is stored (also

called the “address” ofk) is denoted by&k

� it is convenient to print memory addresses in Hexadecimal notation

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 9. Pointers 1

Pointers

Pointers:

� a pointeris a special type of variable for storing the memory location

or “address” of another variable

� pointers shouldn’t be scary or confusing – provided they areused

correctly

� pointers can make your code more compact and efficient.

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 9. Pointers 6

Size of a Memory Address

Just like any other variable of a certain type, a variable that is a pointer

also occupies space in memory. The number of memory cells needed

depends on the computer’s architecture. For example:

• for an old computer, or a hand-held device with only 64KB of

addressable memory, a pointer only requires 2 memory cells

(i.e. 2 bytes) to hold any address from 0000 to FFFF16 = 6553510

• for desktop machine with 4GB of addressable memory,

a pointer requires 4 memory cells (i.e. 4 bytes) to hold any address

from 00000000 to FFFFFFFF16 = 429496729510

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 9. Pointers 4

Variables in Memory

int k;

int m;

printf("address of k is %X\n", &k);

printf("address of m is %X\n", &m);

address of k is BFFFFB80
address of m is BFFFFB84

This means thatk occupies the four bytes fromBFFFFB80 to BFFFFB83,

andm occupies the four bytes fromBFFFFB84 to BFFFFB87.

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 9. Pointers 7

Pointers

Suppose we have a pointerp that “points to” achar variablec. Assuming

that the pointerp requires 2 bytes to store the address ofc, here is what

the memory map might look like:

char variable "c"

Pointer variable "p"

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 9. Pointers 5

Arrays in Memory

When an array is declared, the elements of the array are guaranteed to be

stored inconsecutivememory locations:

int array[5];

for(i=0; i < 5; i++) {

printf("address of array[%d] is %X\n", i, &array[i]);

}

address of array[0] is BFFFFB60
address of array[1] is BFFFFB64
address of array[2] is BFFFFB68
address of array[3] is BFFFFB6C
address of array[4] is BFFFFB70

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 9. Pointers 10

Examples of Pointers

int *p; int *q; // this is how pointers are declared

int a[5];

int x = 10, y;

p = &x; // p now points to x

*p = 20; // whatever p points to is now equal to 20

y = *p; // y is now equal to whatever p points to

p = &a[2]; // p points to an element of array a[]

q = p; // q and p now point to the same thing

q++; // q now points to the next element of a[]

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 9. Pointers 8

The * Notation

Now that we have assigned top the address of variablec, we need to be

able to reference the data in that memory location.

operator* is used to access the object the pointer points to. Hence to

change the value ofc using the pointerp:

*p = ’T’; // sets the value of c to ’T’

The* operator is sometimes described as “dereferencing” the pointer,

to access the underlying variable.

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 9. Pointers 11

Example - Swapping Variables

Question:

Can we write a function to “swap” two variables?

We will first show how to do it thewrongway, and then theright way

(using pointers).

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 9. Pointers 9

The * Notation cont.

Things to note:

• All pointers are constrained to point to a particular type ofobject.

// a potential pointer to any object of type char

char *s;

// a potential pointer to any object of type int

int *p;

• If pointerp is pointing to an integer variablex, then*p can occur in

any context thatx could.

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 9. Pointers 14

swap() - the right way

void swap(int * p, int * q)

{

int temp;

// this will change the actual values of a and b

temp = *p; *p = *q; *q = temp;

}

int main(void)

{

int a = 5, b = 7;

swap(&a, &b);

// a and b will now be successfully swapped

printf("a = %d, b = %d\n", a, b);

}

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 9. Pointers 12

swap() - the wrong way

void swap(int a, int b)

{

int temp;

// only the local "copies" of a and b will swap

temp = a; a = b; b = temp;

}

int main(void)

{

int a = 5, b = 7;

swap(a, b);

// a and b will still have their original values

printf("a = %d, b = %d\n", a, b);

}

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 9. Pointers 15

Pointers and Arrays

Pointers and arrays are very similar. In general, any operation that can be

achieved using an array can also be achieved using a pointer.

Hence if we have:

int a[10], x;

int *p;

p = &a[0]; // or equivalently p = a;

thenp now points to the start of the arraya. Consequently:

x = a[4] is the same as x = *(p+4)

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 9. Pointers 13

Function Parameters and Pointers

� in C, parameters are “call-by-value”

◮ changes made to the value of a parameter do not affect the original

variable

◮ functionswap() tries to swap the values ofa andb, but fails

because it only swaps thecopies, not the “real” variables in

main()

� we can achieve “simulated call-by-reference” by passing pointers as

parameters

◮ this allows the function to change the “actual” value of the

variables.

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 9. Pointers 18

Pointer Arithmetic

A subtle point to note:

� when you add (or subtract) an integern from a pointerp, e.g.:

p += n;

the result is thatp now points to the n-th object beyond the onep

previously pointed to.

� this is true regardless of the kind of objectp points to.

� in other words,n is scaledaccording to the size of the type of object

p points to, which is determined by the declaration ofp.

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 9. Pointers 16

Pointers and Arrays cont.

� In general, ifp points toa[0], then

a[i] is the same as *(p+i)

� This is true regardless of thetype or size of the variables in the array

a[]. Hence:

◮ (p+1) always points to the next object;

◮ (p+i) points to the i-th object beyondp

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 9. Pointers 19

Pointers and Arrays cont.

Beware: although there are lots of similarities between array namesand

pointers, the following caveats apply:

� a pointer is a variable, sop++ is ok.

� an array name isnot a variable, soa++ is not ok

(for this reason, an array is sometimes regarded as a “constant pointer”)

� an array definition causes an allocation of data storage space equal to

the size specified.

� when a pointer is declared, no space is set aside to store anything

other than the pointer itself.

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 9. Pointers 17

Pointers and Arrays cont.

The similarity between arrays and pointers does not end there. It is

possible to write:

*(p+i) as p[i]

and

a[i] as *(a+i)

Given that it is possible to writea[i] as*(a+i), thena must be a

synonym for the location of the array’s initial element. Hence the

following are equivalent:

p = &a[0] is the same as p = a

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 9. Pointers 22

Pointer Hazards

If an uninitialized or otherwise invalid pointer is used, oran array is

accessed with a negative or out-of-bounds index, one of a number of

things might happen:

• program aborts immediately with a “segmentation fault”

• a mysterious failure much later in the execution of the program

• incorrect results, but no obvious failure

• correct results, but maybe not always, and maybe not when executed

on another day, or another machine

The first is the most desirable, but cannot be relied on.

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 9. Pointers 20

Expression and Precedence

Both * and&, being unary operators, have a precedence higher than
arithmetic operators. So assumingp is a pointer then:

*p = *p + 3; // add 3 to whatever p points to

*p -= 2; // subtract 2 from whatever p points to

*p != *q // compare the values p and q point to

But note how* interacts with++ and--

x = *(p++); // increment the pointer p itself

x = *p++; // same as above, but considered bad style

x = (*p)++; // increment what p points to

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 9. Pointers 23

malloc() and free()

What happens if you do not know the size of an array at compile time?

You can dynamically create an array at run-time and assign itto a pointer,

using themalloc() function.

The malloc() function is used to acquire a block of memory of a

specified size from a central pool of memory called the “heap”.

If successful,malloc() returns a pointer to the space requested,

else it returns aNULL pointer if the request cannot be satisfied.

Thefree() function is used to free up a previouslymalloc’ed block

of memory, i.e. the parameter tofree() must be a pointer to a space

previously allocated bymalloc().

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 9. Pointers 21

Passing Arrays as Parameters

When an array is passed as a parameter to a function, what the function

receives is actually a pointer to the first element of the array.

Hence, the function can change the actual values stored in the array

(as in the “swap” example).

int main(void)

{

int count[26] = { 0 };

get_freq(count); // count frequencies of input chars

print_freq(count); // print the frequencies in a table

}

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 9. Pointers 26

Two-Dimensional Arrays

When a two-dimensional array is declared, the elements of the first row

are stored into consecutive memory locations, followed by those of the

second row, and so on.

float table[2][3];

table[0][0] is at BFFFFB80
table[0][1] is at BFFFFB84
table[0][2] is at BFFFFB88
table[1][0] is at BFFFFB8C
table[1][1] is at BFFFFB90
table[1][2] is at BFFFFB94

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 9. Pointers 24

malloc() and free()

For example, let’s assume we need a block of memory to hold an array of

doubles, whose size is typed in by the user.

double *p; int n;

printf("Enter size of array: ");

scanf("%d",&n);

p = (double *)malloc(n * sizeof(double));

if(p == NULL) {

printf("Error: array could not be allocated.\n");

exit(1);
}

//...we can now use p[] just like an array...

free(p); // free up the memory that was used

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 9. Pointers 25

malloc() and free()

� Becausemalloc() returns avoid * pointer (i.e. a pointer that is not
typed) we need tocastthe pointer into an appropriately typed pointer,
in this instance we cast the pointer into achar pointer.

� Once you’ve finished using the block of memory, the memory needs
to be returned back to the “heap” (central pool) using thefree()

function.

� You are only allowed tofree() a block of memory that was
previouslymalloc’ed; if you attempt to free aNULL pointer, or an
unallocated pointer, it might cause an error.

� A malloc() without a correspondingfree() is called amemory
leak. Memory leaks eventually lead the program to crash, and are
very difficult to track down.

COMP1917 c©Alan Blair, UNSW, 2006-2014

