COMP1917: Computing 1

7. Number Storage and Accuracy

Reading: Moffat, Section 13.2

COMP1917 (©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 7. Number Storage and Accuracy

Decimal Arithmetic — Addition

carry
2097 + Addend
5 Augend
2102 Sum

Important principle of “sum” and “carry”

COMP1917 (©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 7. Number Storage and Accuracy

Outline

Binary Arithmetic
Negative Numbers
Overflow

Floating Point
Roundoff Errors

Type Conversion

COMP1917 (©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 7. Number Storage and Accuracy

Binary Arithmetic — Addition

Similar idea: “sum” and “carry”
Four cases to consider:

Addend 0 0 1 1
Augend 0 1 0 1

Sum O 1 1 o0
Carry 0O 0 O

COMP1917 (©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 7. Number Storage and Accuracy

Binary Arithmetic — Addition

1010+ 1210 = 22y

o|lr P,
R, O
[o T
o|lo o

COMP1917 (©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 7. Number Storage and Accuracy

Overflow

Question: What will happen when this code is executed ?

unsigned char ¢ = 250;

int i;

for(i=0; i < 10; i++) {
printf("c = %3d\n", c);
c++;

)

COMP1917 (©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 7. Number Storage and Accuracy

Unsigned Data Types in C

type bytes | bits range

unsigned char 1 8 0...255

unsigned short 2 16 0 ... 65535

unsigned int 4 32 | 0...4294967295
n 0..2-1

Note: these sizes are machine dependent. Some machings@igte an
“unsigned long” type using a larger number of bytes. You can use the
sizeof () function to determine the sizes on your machine.

COMP1917 (©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 7. Number Storage and Accuracy

“Clock” Arithmetic

COMP1917 (©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 7. Number Storage and Accuracy

Representations for Negative Numbers

Hex Binary Unsigned Sign-Mag Excess7 2'sComplement

F 1111 15 -7 +8 -1
E 1110 14 —6 +7 -2
D 1101 13 -5 +6 -3
C 1100 12 —4 +5 —4
B 1011 11 -3 +4 -5
A 1010 10 -2 +3 —6
9 1001 9 -1 +2 -7
8 1000 8 -0 +1 -8
7 0111 7 +7 0 +7
6 0110 6 +6 -1 +6
5 0101 5 +5 -2 +5
4 0100 4 +4 -3 +4
3 0011 3 +3 -4 +3
2 0010 2 +2 -5 +2
1 0001 1 +1 —6 +1
0 0000 0 +0 -7 0
COMP1917 (©Alan Blair, UNSW, 2006-2014
COMP1917 14s2 7. Number Storage and Accuracy

Justification for 2’'s Complement

Motivation:

We want to find a way of representing negative numbers which
allows us to use the same hardware we already use for positive
numbers.

Question 1:

What number should we use for “minus one” ?
i.e. what number, when one is added to it, becomes zero ?

COMP1917 (©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 7. Number Storage and Accuracy

Comparison of Representations

Signed-Magnitude is difficult to compute with, and has twmze

Excess-7 is useful for floating point exponents, but not femegal
integers

2's Complement is the most convenient, and most widely used

COMP1917 (©Alan Blair, UNSW, 2006-2014
COMP1917 14s2 7. Number Storage and Accuracy

“Minus One”

Answer 1:

The binary number 11111111 should be used for “minus one”.
Check:

11 1 1 1 1 1 1 +
1
0O 0 0 0 OO 0O

(Note: the final carry bit is ignored)
Question 2:
What number should be the negative of 10011100 ?

COMP1917 (©Alan Blair, UNSW, 2006-2014

11

COMP1917 14s2 7. Number Storage and Accuracy

Two’s Complement

Answer 2:

The negative of 10011100 should be
011000111 =01100100

Check:
0O O 1 0 0 +
0 0O 0 O 1
1 1 1 1 1 +
1
0O 0 0O OO O O O
COMP1917 (©Alan Blair, UNSW, 2006-2014
COMP1917 14s2 7. Number Storage and Accuracy
Time Zones
Greenwich Mean Time
-3 hours +3 hours
-6 hours +6 hour:
-9 hours +9 hours

International Date Line

COMP1917 (©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 7. Number Storage and Accuracy

Computing Two's Complement

General rule for finding the negative of a binary number:

Step 1: replace every 1 with 0, every 0 with 1
Step 2: add 1

Example: find the 2's Complement representation f658;¢

0 01 121 010

1 1 0 0 0 1 0 1 one’scomplement
1 +1

1 1 0 0 0 1 1 0 two'scomplement

COMP1917 (©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 7. Number Storage and Accuracy

Signed Clock Arithmetic

COMP1917 (©Alan Blair, UNSW, 2006-2014

13

15

COMP1917 14s2 7. Number Storage and Accuracy

Sign and MSB

You can tell thesignof the number from th&lost Signifcant BittMSB)

if MSB is 1, number is negative

if MSB is 0, number is positive or zero

Note: this means there is always “one extra” negative number

COMP1917 (©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 7. Number Storage and Accuracy

Signed Overflow

Question: What will happen when this code is executed ?
int i=0;

while (i >=0) {
i += 1024;

printf("%d J%d\n", i-1, i);

COMP1917 (©Alan Blair, UNSW, 2006-2014

16

18

COMP1917 14s2

7. Number Storage and Accuracy

Signed Data Types in C

type bytes | bits range

char 1 8 —128 ...+127

short 2 16 —32768 ...+32767

int 4 32 | —2147483648 ..4-2147483647
n AL (7 Lt

Again, the exact sizes are machine dependent.
Some machines provide adng” type using more bytes.

COMP1917

COMP1917 14s2

(©Alan Blair, UNSW, 2006-2014

7. Number Storage and Accuracy

Overflow in Two’s Complement

In two’s complement we can represent numbers in the range
—(2Y . (211

If we try to add two positive binary numbessandy where
X4y > 2""1_1, the sum will result in a negative number (MSB is 1)

positive overflow

If we try to add two negative binary numbets< and —y where
x4y > 2""1 the sum will result in a positive number (the MSB is 0)

negative overflow

Can use XOR gate in hardware to determine overflow condition

COMP1917

(©Alan Blair, UNSW, 2006-2014

17

19

COMP1917 14s2 7. Number Storage and Accuracy

Positive Overflow in Two’s Complement

Addition of positive numbersvithout overflow
0 x x X

0 x x x +

0 x x X
Carry into MSB must have been 0O; carry out of MSB is 0
Addition of positive numbersvith overflow
0 x x X

0 x x x +

1 x x X
Carry into MSB must have been 1; carry out of MSB is 0
carry in # carry out means overflow has occurred

COMP1917 (©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 7. Number Storage and Accuracy

Decimal Floating Point Numbers

We want to be able to represent very large and very small ntsnbe
with adequate precision. This can be done with “scientific” o
“exponential” notation

speed of light= 1079252848 = 1.079x 10° km/h
mass of proton= 1.672x 102’ kg

This exponential form has 3 components:
sign ('+'or’-")
exponent (positive or negative integer)
fractional part

COMP1917 (©Alan Blair, UNSW, 2006-2014

20 COMP1917 14s2 7. Number Storage and Accuracy

Negative Overflow in Two's Complement

Addition of negative numbengithout overflow
1 x x X

1 x x x +

1 1 x x X
Carry into MSB must have been 1; carry out of MSB is 1
Addition of negative numbengith overflow
1 x x X

1 x x x +

1 0 x x X
Carry into MSB must have been 0; carry out of MSB is 1

carry in # carry out means overflow has occurred

COMP1917 (©Alan Blair, UNSW, 2006-2014

22 COMP1917 14s2 7. Number Storage and Accuracy

Binary Floating Point Numbers

Floating point numbers in the computer
are in an “exponential” binary form
are stored in a limited number of bits.
For example, if 16 bits are available, we might allocate:
1 bit for the sign (0 ="+, 1 ="-)
4 bits for the binary exponent (in Excess-7 form)

11 bits for fractional part, in binary notation

COMP1917 (©Alan Blair, UNSW, 2006-2014

21

23

COMP1917 14s2 7. Number Storage and Accuracy

Floating Point Example

How do we interpret this bit pattern as a floating-point nurbe
1 110001010110000
N~ ———

Sign Exp Fraction

BecauseSign = 1, the number isegative
Exponent ist100 in Excess-7, whichis 127=15

Binary number is:

~1.0101011x 2° = —10101011

Decimal equivalent is-42.75

COMP1917 (©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 7. Number Storage and Accuracy

Floating Point Types in C

type bytes | bits | sign Exponent Fraction
float 4 32 | 1bit| 8bits(Excess-127)| 23 bits
double 8 64 | 1bit | 11 bits (Excess-1023) 52 bits

There are Web sites where you can type a number and see gseepation
as afloat Ordouble

http://babbage.cs.qc.cuny.edu/IEEE-754

COMP1917 (©Alan Blair, UNSW, 2006-2014

24 COMP1917 14s2 7. Number Storage and Accuracy

Floating Point Details

Highest exponent111 is reserved forinfinity, ~infinity or NaN

For exponents betwed&01 (-6) and1110 (+7), we assume a1’ in
front of the fractional part (as in the previous example)

Lowest exponendb00o0 is treated as a special case, in order to
represent very small numbers (including zero)

we assume 'O’ instead of '1" in front of the fractional part

to compensate, the exponent is increased by one (to -6)

for example:

0 000000101000006= 0.00101x 26
—~ N — ——

Sign Exp Fraction

COMP1917 (©Alan Blair, UNSW, 2006-2014

26 COMP1917 14s2 7. Number Storage and Accuracy

Roundoff Errors

Question: What will happen when this code is executed?
float x = 0.0;
while(x < 1.0) {

x =x + 0.02;

printf("x = %1.10f\n", x);

COMP1917 (©Alan Blair, UNSW, 2006-2014

25

27

COMP1917 14s2

COMP1917 14s2

7. Number Storage and Accuracy

Roundoff Example

Answer:
x = 1.0199996233
Why?

the Binary expansion of.02 does not terminate; so it instead gets
truncated, producing a small error.

these small errors accumulate, causing the loop to exeoet¢irne
too many.

this problem can often be avoided by usingiait rather than a
float to test the loop condition

COMP1917 (©Alan Blair, UNSW, 2006-2014

7. Number Storage and Accuracy

Type Conversions

In an expression where you have operands of different tytheg, are
automatically converted to a common type such that:

e the operand with the “narrower” type is converted into a ‘svidype.
This is done only if there is no loss of information.

Warning: Expressions that might lose informatiang. assigning a float
to an integer, are permissible. If you are lucky, the compilay generate
a warning.

The best defense against loss of information in automapie gpnversion
is to be explicit in your type conversion, i.e. when in doubgke the type
conversion explicit.

COMP1917 (©Alan Blair, UNSW, 2006-2014

COMP1917 14s2

7. Number Storage and Accuracy

Big or Small Numbers First?

Which code will produce the more accurate result?

float x = 0.0;

int 1i;

for(i=0; i<100; i++) {
x += 0.01;

}

x += 1000000.0;

printf ("x=J1.2f\n",x);

COMP1917

COMP1917 14s2

float x = 0.0;

int 1i;
x += 1000000.0;

for(i=0; i<100; i++) {
x += 0.01;

printf ("x=%1.2f\n",x);

(©Alan Blair, UNSW, 2006-2014

7. Number Storage and Accuracy

Type Conversions cont.

What is the output of this code ?

float x = 22 / 7;

printf("%1.2f\n",
printf("%1.2f\n",

X)
22 / 7.0);

printf("%1.2f\n", (float) 22 /7)
printf("%1.2f\n", (float) (22 /7));

printf("%1.2f\n",

22 /7);

Note: the output may be different from one machine to anbther

COMP1917

(©Alan Blair, UNSW, 2006-2014

29

31

