COMP1917: Computing 1

7. Number Storage and Accuracy

Reading: Moffat, Section 13.2

COMP1917 © Alan Blair, UNSW, 2006-2014

COMP1917 14s2

7. Number Storage and Accuracy

Decimal Arithmetic – Addition

■ Important principle of "sum" and "carry"

COMP1917 14s2

7. Number Storage and Accuracy

Outline

■ Binary Arithmetic

Negative Numbers

Overflow

■ Floating Point

Roundoff Errors

Type Conversion

COMP1917

COMP1917 14s2

2

7. Number Storage and Accuracy 3

© Alan Blair, UNSW, 2006-2014

Binary Arithmetic – Addition

■ Similar idea: "sum" and "carry"

Four cases to consider:

Addend Augend 0 Sum Carry

COMP1917 © Alan Blair, UNSW, 2006-2014 COMP1917

© Alan Blair, UNSW, 2006-2014

Binary Arithmetic – Addition

COMP1917 © Alan Blair, UNSW, 2006-2014

COMP1917 14s2

7. Number Storage and Accuracy

7. Number Storage and Accuracy

Unsigned Data Types in C

type	bytes	bits	range
unsigned char	1	8	0 255
unsigned short	2	16	0 65535
unsigned int	4	32	0 4294967295
		n	$0 \dots 2^n - 1$

Note: these sizes are machine dependent. Some machines also provide an "unsigned long" type using a larger number of bytes. You can use the sizeof() function to determine the sizes on your machine.

COMP1917 © Alan Blair, UNSW, 2006-2014

COMP1917 14s2

7. Number Storage and Accuracy

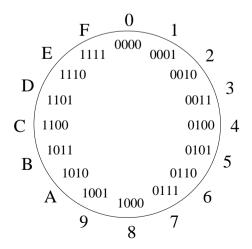
7

Overflow

Question: What will happen when this code is executed?

```
unsigned char c = 250;
int i;
for( i=0; i < 10; i++ ) {
   printf("c = %3d\n", c);
   c++;
```

"Clock" Arithmetic



COMP1917 14s2 7. Number Storage and Accuracy COMP1917 14s2 7. Number Storage and Accuracy

10

Representations for Negative Numbers

Hex	Binary	Unsigned	Sign-Mag	Excess-7	2's Complement
F	1111	15	-7	+8	-1
E	1110	14	-6	+7	-2
D	1101	13	-5	+6	-3
C	1100	12	-4	+5	-4
В	1011	11	-3	+4	-5
A	1010	10	-2	+3	-6
9	1001	9	-1	+2	-7
8	1000	8	-0	+1	-8
7	0111	7	+7	0	+7
6	0110	6	+6	-1	+6
5	0101	5	+5	-2	+5
4	0100	4	+4	-3	+4
3	0011	3	+3	-4	+3
2	0010	2	+2	-5	+2
1	0001	1	+1	-6	+1
0	0000	0	+0	-7	0

COMP1917 © Alan Blair, UNSW, 2006-2014

COMP1917 14s2

7. Number Storage and Accuracy

Justification for 2's Complement

Motivation:

We want to find a way of representing negative numbers which allows us to use the same hardware we already use for positive numbers.

Question 1:

What number should we use for "minus one"? i.e. what number, when one is added to it, becomes zero?

Comparison of Representations

- Signed-Magnitude is difficult to compute with, and has two zeros
- Excess-7 is useful for floating point exponents, but not for general integers
- 2's Complement is the most convenient, and most widely used

COMP1917

© Alan Blair, UNSW, 2006-2014

11

COMP1917 14s2

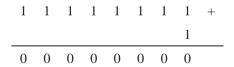
7. Number Storage and Accuracy

"Minus One"

Answer 1:

The binary number 11111111 should be used for "minus one".

Check:



(Note: the final carry bit is ignored)

Question 2:

What number should be the negative of 10011100?

Two's Complement

Answer 2:

The negative of 10011100 should be 01100011 + 1 = 01100100

Check:

1	0	0	1	1	1	0	0	+
0	1	1	0	0	0	1	1	
1	1	1	1	1	1	1	1	+
							1	
0	0	0	0	0	0	0	0	

COMP1917 © Alan Blair, UNSW, 2006-2014

COMP1917 14s2

7. Number Storage and Accuracy

7. Number Storage and Accuracy

14

12

Time Zones

Greenwich Mean Time -3 hours +3 hours +6 hours -6 hours -9 hours +9 hours

International Date Line

Computing Two's Complement

General rule for finding the negative of a binary number:

Step 1: replace every 1 with 0, every 0 with 1

Step 2: add 1

Example: find the 2's Complement representation for -58_{10}

0	0	1	1	1	0	1	0	
1	1	0	0	0	1	0	1	one's complement
							1	+1
1	1	0	0	0	1	1	0	two's complement

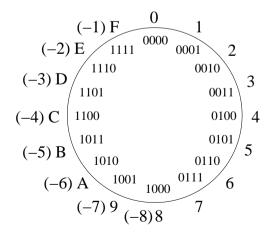
COMP1917 14s2

COMP1917

7. Number Storage and Accuracy

15

Signed Clock Arithmetic



© Alan Blair, UNSW, 2006-2014

Sign and MSB

You can tell the sign of the number from the Most Significant Bit (MSB)

7. Number Storage and Accuracy

- if MSB is 1, number is negative
- if MSB is 0, number is positive or zero

Note: this means there is always "one extra" negative number.

COMP1917

© Alan Blair, UNSW, 2006-2014

COMP1917 14s2

7. Number Storage and Accuracy

18

16

COMP1917 14s2

COMP1917

7. Number Storage and Accuracy

19

Signed Overflow

Question: What will happen when this code is executed?

```
int i=0;
while ( i \ge 0 ) {
   i += 1024;
printf( "%d %d\n", i-1, i );
```

Signed Data Types in C

type	bytes	bits	range
char	1	8	−128 +127
short	2	16	$-32768 \dots +32767$
int	4	32	-2147483648 +2147483647
		n	$-2^{n-1} \dots + (2^{n-1} - 1)$

Again, the exact sizes are machine dependent.

Some machines provide a "long" type using more bytes.

Overflow in Two's Complement

- In two's complement we can represent numbers in the range $-(2^{n-1}) \dots + (2^{n-1}-1)$
- \blacksquare If we try to add two positive binary numbers x and y where $x+y>2^{n-1}-1$, the sum will result in a negative number (MSB is 1)
 - positive overflow
- If we try to add two negative binary numbers -x and -y where $x+y>2^{n-1}$, the sum will result in a positive number (the MSB is 0)
 - negative overflow
- Can use XOR gate in hardware to determine overflow condition

© Alan Blair, UNSW, 2006-2014

20

Positive Overflow in Two's Complement

Addition of positive numbers without overflow

7. Number Storage and Accuracy

- ► Carry into MSB must have been 0; carry out of MSB is 0
- Addition of positive numbers with overflow

- ► Carry into MSB must have been 1; carry out of MSB is 0
- \blacksquare carry in \neq carry out means overflow has occurred

COMP1917

© Alan Blair, UNSW, 2006-2014

COMP1917 14s2

7. Number Storage and Accuracy

22

Decimal Floating Point Numbers

- We want to be able to represent very large and very small numbers, with adequate precision. This can be done with "scientific" or "exponential" notation
 - ightharpoonup speed of light = $1079252848.8 = 1.079 \times 10^9$ km/h
 - ightharpoonup mass of proton = 1.672×10^{-27} kg
- This exponential form has 3 components:
 - ▶ sign ('+' or '-')
 - exponent (positive or negative integer)
 - fractional part

Negative Overflow in Two's Complement

Addition of negative numbers without overflow

- ► Carry into MSB must have been 1; carry out of MSB is 1
- Addition of negative numbers with overflow

- ► Carry into MSB must have been 0; carry out of MSB is 1
- \blacksquare carry in \neq carry out means overflow has occurred

COMP1917

© Alan Blair, UNSW, 2006-2014

COMP1917 14s2

7. Number Storage and Accuracy

23

Binary Floating Point Numbers

Floating point numbers in the computer

- are in an "exponential" binary form
- are stored in a limited number of bits.

For example, if 16 bits are available, we might allocate:

- ▶ 1 bit for the sign (0 = '+', 1 = '-')
- ▶ 4 bits for the binary exponent (in Excess-7 form)
- ▶ 11 bits for fractional part, in binary notation

COMP1917 14s2 7. Number Storage and Accuracy 24 COMP1917 14s2 7. Number Storage and Accuracy 25

26

Floating Point Example

How do we interpret this bit pattern as a floating-point number?

- \triangleright Because Sign = 1, the number is negative
- \triangleright Exponent is 1100 in Excess-7, which is 12-7=5
- ▶ Binary number is:

$$-1.0101011 \times 2^5 = -101010.11$$

▶ Decimal equivalent is −42.75

COMP1917 © Alan Blair, UNSW, 2006-2014

COMP1917 14s2

7. Number Storage and Accuracy

Floating Point Types in C

type	bytes	bits	sign	Exponent	Fraction
float	4	32	1 bit	8 bits (Excess-127)	23 bits
double	8	64	1 bit	11 bits (Excess-1023)	52 bits

There are Web sites where you can type a number and see its representation as a float or double

http://babbage.cs.qc.cuny.edu/IEEE-754

Floating Point Details

- Highest exponent 1111 is reserved for +infinity, -infinity or NaN
- For exponents between 0001 (-6) and 1110 (+7), we assume a '1' in front of the fractional part (as in the previous example)
- Lowest exponent 0000 is treated as a special case, in order to represent very small numbers (including zero)
 - we assume '0' instead of '1' in front of the fractional part
 - ▶ to compensate, the exponent is increased by one (to -6)
 - **b** for example:

$$\underbrace{0.000000101000000}_{\text{Sign}} \underbrace{000000101000000}_{\text{Fraction}} = 0.00101 \times 2^{-6}$$

COMP1917

COMP1917 14s2

7. Number Storage and Accuracy

27

© Alan Blair, UNSW, 2006-2014

Roundoff Errors

Question: What will happen when this code is executed?

```
float x = 0.0;
while(x < 1.0) {
   x = x + 0.02;
printf( "x = %1.10f\n", x );
```

COMP1917 14s2 7. Number Storage and Accuracy 28 COMP1917 14s2 7. Number Storage and Accuracy 29

Roundoff Example

Answer:

x = 1.0199996233

Why?

- the Binary expansion of 0.02 does not terminate; so it instead gets truncated, producing a small error.
- these small errors accumulate, causing the loop to execute one time too many.
- this problem can often be avoided by using an int rather than a float to test the loop condition

COMP1917 (© Alan Blair, UNSW, 2006-2014

COMP1917 14s2

7. Number Storage and Accuracy

30

rage and Accuracy

Type Conversions

In an expression where you have operands of different types, they are automatically converted to a common type such that:

• the operand with the "narrower" type is converted into a "wider" type. This is done only if there is no loss of information.

Warning: Expressions that might lose information, *e.g.* assigning a float to an integer, are permissible. If you are lucky, the compiler may generate a warning.

The best defense against loss of information in automatic type conversion is to be explicit in your type conversion, i.e. when in doubt, make the type conversion explicit.

Big or Small Numbers First?

Which code will produce the more accurate result?

```
float x = 0.0;
int i;

for(i=0; i<100; i++) {
    x += 1000000.0;
    x += 0.01;
    for(i=0; i<100; i++) {
        x += 0.01;
    }

printf("x=%1.2f\n",x);
    printf("x=%1.2f\n",x);</pre>
```

COMP1917

© Alan Blair, UNSW, 2006-2014

COMP1917 14s2

7. Number Storage and Accuracy

31

Type Conversions cont.

What is the output of this code?

Note: the output may be different from one machine to another!