
COMP1917 14s2 5. Functions 2

Functions

Functions have the form:

return-type function-name (parameters)

{

declarations

statements

return(...);

}

• Functions allow you to separate out and “encapsulate” a piece of code
that serves a single purpose – thus allowing code to bereusedrather
than just repeated.

• The use of functions serves to clarify your code – making it easier to
read, modify and debug.

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917: Computing 1

5. Functions

Reading: Moffat, Chapter 5.

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 5. Functions 3

Function Calls

When a function is called:

1. space is allocated for its parameters and local varables.

2. the parameter expressions in the calling function are evaluated and, if

necessary, converted to the declared parameter types.

3. C uses “call-by-value” parameter passing – which means that the

function works only on its own local copies of the parameters, not the

ones in the calling function.

4. local variables need to be assigned before they are used – otherwise

they will have “garbage” values.

5. function code is executed, until the firstreturn statement is reached.

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 5. Functions 1

Programming Language Principles

Four techniques provided by almost all programming languages:

� Calculation: doing arithmetic to compute new values

� Selection: choosing between alternative execution paths

� Iteration: repeating a computation until desired conditions are met

� Abstraction: creating units which can be reused, and whose internal

details are hidden from outside inspection.

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 5. Functions 6

Example: Euclid’s Algorithm

int main(void) {

int g, a = 15, b = 42;

g = gcd(a, b); // compute Greatest Common Divisor

printf("GCD of %d and %d is: %d\n", a, b, g);

}

int gcd(int a, int b) { // Euclid’s method to find GCD

int r; // remainder

while(b > 0) {

r = a % b;

a = b; // only the local "copies" of a and b change,

b = r; // not the ones in the calling function

}

return(a);

}COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 5. Functions 4

The return Statement

6. when areturn statement is executed, the function terminates:

return expression ;

7. the returned expression will be evaluated and, if necessary, converted
to the type expected by the calling function.

8. all local variables and parameters will be thrown away when the
function terminates.

9. the calling function is free to use the returned value, or to ignore it.

Functions can be declared as returningvoid, which means that nothing
is returned. Thereturn statement can still be used to terminate such a
function:

return;

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 5. Functions 7

Scoping of Variables

Using the SAME name for DIFFERENT variables is NOT recommended,

but here’s what happens if you do ...

int x; // global variable, accessible to all functions

this_function()

{
int x; // local variable "occludes" the global one

... // within this function

{

int x; // inner variable occludes

... // both the others within this block
}

// now we go back to the "outer" variable
}

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 5. Functions 5

Function Prototypes

If a function is defined after it is used, or in a separate file, afunction

prototypemust be included at the top of the file.

int gcd(int a, int b); // this is the function prototype

int main(void)

{

g = gcd(x, y); // the function is used here

}

int gcd(int a, int b)

{

// the actual code for the function is here

}

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 5. Functions 10

Generating Documentation Automatically

There are some utilities, like Doxygen, which can automatically create

snazzy html documentation for your source code with appropriate

formatting and clickable links, if you include comments in aparticular

format.

(http://www.stack.nl/~dimitri/doxygen)

> ~cs1917/bin/doxygen mortgage.c loan.c

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 5. Functions 8

Sharing Functions between Files

// tell compiler that loan_term() is defined elsewhere

double loan_term(

double rate,

double principal,

double pay_amount,

double num_per_year

);

int main(void)

{ ...

time = loan_term(rate, principal, payment, 12);

...

}

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 5. Functions 11

Doxygen Example

/** \file loan.c

Compute the time required to pay off a loan.

*/

/**

@param rate percentage interest rate

@param principal amount of money borrowed

@param pay_amount amount of each payment

@param num_per_year number of payments per year

@return number of years to pay off the loan

*/

double loan_term(...)

{ ... }

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 5. Functions 9

Compiling Multiple Files

Two ways to compile multiple files:

> gcc mortgage.c loan.c

.. OR ..

> gcc -c mortgage.c loan.c

> gcc mortgage.o loan.o

The first command createsobjectfiles with a.o suffix.

The second command links these object files together to create an

executable.

Only one of the files should contain amain function.

COMP1917 c©Alan Blair, UNSW, 2006-2014

