
COMP1917 14s2 2. Numbers In, Numbers Out 2

Work methodically – don’t just hack !

Like an architect building a house, or a hungry person eatinga pizza, you

should plan in advance and do the job one piece and one bite at atime, not

try to shove the whole thing into your mouth at once.

Remember:

“A day of debugging can save an hour of planning”

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917: Computing 1

2. Numbers In, Numbers Out

Reading: Moffat, Chapter 2.

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 2. Numbers In, Numbers Out 3

Programming Task

Write a program to:

� read an integer from standard input (keyboard)

� compute the cube of that integer

� print that result to standard output (screen)

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 2. Numbers In, Numbers Out 1

The Art of Programming

• Think about the problem

• Write down a proposed solution

• Break each step into smaller steps

• Convert the basic steps into instructions in the program

• Use aneditorto create afile containing the program

• Use thecompilerto check thesyntaxof the program

• Test the program on a range of data

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 2. Numbers In, Numbers Out 6

Variable Declarations

� Each variable must have adeclaration, which tells the compiler to

reserve storage space

� Variable declarations are like the list of ingredients at the top of a

cooking recipe

� A variable declaration must specify adata typeand aname

float x;

char ch;

int num;

� Declarations can be placed after the opening bracket{ in a function

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 2. Numbers In, Numbers Out 4

Structure of the Program

#include <stdio.h>

int main(void)

{

// declare variable(s)

// read value(s) from standard input (keyboard)

// compute the required result

// print result to standard output (screen)

return 0;

}

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 2. Numbers In, Numbers Out 7

Function and Variable Names – Identifiers

� Identifier names must be made up of letters and digits.

� The first charactermustbe a letter.

� The underscore character ’_’ counts as a letter.

� uppercase and lowercase are different

� Restrictions: Keywords like:

if, while, do, int, char, float ... etc

cannot be used as identifiers

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 2. Numbers In, Numbers Out 5

Variables and Types

� Variables are used to store data

� In C each variable must have atype

� C has the following generic data types:

char character (’A’, ’e’, ’#’, . . .)

int integer (2, 17, -5, . . .)

float floating point number (3.14159, . . .)

� there are other types, which are variations on these three.

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 2. Numbers In, Numbers Out 10

Assigning Values to Variables

� Variables can be assigned values using the= operator
n = 23;

x = 3.1415;

� Variables can also beinitialisedwhen they are declared
char c = ’A’;

int x = 75;

� Variables can be modified during a program

cube = num * num * num;

x = x + 1;

The expression to the right of= is evaluatedand the result stored in
the variable to the left of the=

� variables must be assigned before they are used; otherwise they will
have “garbage” values.

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 2. Numbers In, Numbers Out 8

Input using scanf()

#include <stdio.h>

...

scanf("%d", &num);

� reads input according to a format and stores value(s) in arguments

� returns the number of input items successfully read, orEOF on failure

or end of file

� at least one argument but possibly more

� each argument (unless an array) must be preceded by ampersand

character’&’

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 2. Numbers In, Numbers Out 11

Arithmetic Operators

The following are binary operators:

Name Symbol Example Conditions

Add + a+b none

Subtract − a−b none

Multiply ∗ a∗b none

Divide / a / b ignore remainder for integer

division

Modulus % a % b remainder ofa / b

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 2. Numbers In, Numbers Out 9

scanf()

#include <stdio.h>

int scanf(const char *format, ...);

Format can contain:

� blanks, tabs (whitespace) – ignored

� ordinary characters – must match characters of input stream

� conversion specifications

◮ %d – decimal integer

◮ %c – character

◮ %f – float

◮ %lf – double (“long float”)

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 2. Numbers In, Numbers Out 14

Complete Program

#include <stdio.h>

int main(void)

{

int num, cube;

printf("Enter a number: "); // prompt user for input

scanf("%d", &num);

cube = num * num * num;

printf("The cube of %d is %d\n", num, cube);

return 0;

}

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 2. Numbers In, Numbers Out 12

Abbreviated Assignment Operators

C allows certain “abbreviated” assignment operators when the same

variable appears on the left and right side. For example,

x += 10;

is an abbreviation for

x = x + 10;

We can also use

-= *= /= %=

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 2. Numbers In, Numbers Out 15

Slightly More Elaborate Programming Task

Einstein’s theory of Relativity predicts that the mass of anobject will

increase as its velocity increases, according to this equation:

m =
m0

√

1− (v
c)

2
where:

m is the observed mass
m0 is the rest mass
v is the velocity
c is the speed of light

Write a program which reads the rest mass and velocity from standard

input, computes the observed mass and prints it to standard output.

(You do not need to understand the physics in order to complete the task!)

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 2. Numbers In, Numbers Out 13

Printing Variable Values with printf()

printf("The cube of %d is %d\n", num, cube);

� formatted output written to standard output

� very useful and flexible function

� can print multiple values in a single statement

� printf(), used judiciously, can be very helpful for debugging

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 2. Numbers In, Numbers Out 18

Symbolic Constants

Alternatively, we can define asymbolic constantat the top of the file:

#define SPEED_OF_LIGHT 299792458.0

� we use symbolic constants to avoid burying “magic numbers” or
values in the code.

� symbolic constants make the code easier to understand and maintain

#define name replacement text

� the compiler’s pre-processorwill parseyour code replacing all
occurrences ofname with replacement text.

� it will not make the replacement ifname is inside quotes or part of
another name.

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 2. Numbers In, Numbers Out 16

Variable Names

It is helpful to use descriptive names for your variables, which make the

code eaiser to read and understand.

float mass, rest_mass;

float velocity, ratio;

These are called “variables” because their values canvary as the program

executes.

We might like to treat the speed of light differently, because its value is

constantand cannot change during the execution of the program.

There are two ways to handle constants in C.

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 2. Numbers In, Numbers Out 19

Identifiers – Conventions

• many library functions begin their names with an underscore’_’ .

For this reason, you should avoid starting your own functionor

variable names with an underscore.

• some programmers like to capitalize the first letter of each word

SetPrime();

others like to use all lowercase, with an underscore betweenwords

int frequency_count;

• by convention, constants are defined in full uppercase.

• single letters from’a’ to ’n’ often used as counters and indices.

• longer names are encouraged for external variables and for clarity.

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 2. Numbers In, Numbers Out 17

Constant Declarations

We can declare a “constant variable”:

const float SPEED_OF_LIGHT = 299792458.0;

. . . or, using scientific notation . . .

const float SPEED_OF_LIGHT = 3e+8;

� variables declared with theconst qualifier cannot be altered.

� attempting to alter aconst variable will generate a compilation error.

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 2. Numbers In, Numbers Out 22

Mathematical Equations

If necessary, break a large equation into smaller pieces or split it across

multiple lines.

m =
m0

√

1− (v
c)

2

ratio = velocity / SPEED_OF_LIGHT;

mass = rest_mass / sqrt(1.0 - ratio * ratio);

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 2. Numbers In, Numbers Out 20

scanf() and printf() with floats

printf("Enter rest mass: ");

scanf("%f", &rest_mass);

printf("Enter velocity in m/s: ");

scanf("%f", &velocity);

...

printf("Observed mass = %1.6f\n", mass);

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 2. Numbers In, Numbers Out 23

Math Library Functions

#include <math.h>

sqrt(...)

If your program uses mathematical functions likesqrt(), sin(),

cos(), log(), exp(), etc. then you need to includemath.h and also

compile with the-lm option (which stands for “library math”)

$ gcc -Wall -o einstein einstein.c -lm

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 2. Numbers In, Numbers Out 21

printf()

#include <stdio.h>

int printf(const char *format, ...);

format may contain ordinary text as well as conversion characters,

which print the value of the next argument:

%d decimal integer

%5d decimal integer at least 5 chars wide

%f floating point number

%5f floating point number at least 5 chars wide

%.3f floating point number 3 decimal places

%5.3f floating point number at least 5 chars 3 decimal places

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 2. Numbers In, Numbers Out 26

Question

What if you type in avelocity that is greater than theSPEED OF LIGHT?

Whatwill happen?

Whatshouldhappen?

How can you make it happen?

COMP1917 c©Alan Blair, UNSW, 2006-2014

COMP1917 14s2 2. Numbers In, Numbers Out 24

Complete Program

#include <stdio.h>

#include <math.h>

// remember to compile with -lm

// speed of light in m/s

#define SPEED_OF_LIGHT 299792458.0

int main(void)

{

float mass, rest_mass;

float velocity;

float ratio;

COMP1917 14s2 2. Numbers In, Numbers Out 25

printf("Enter rest mass: ");

scanf("%f", &rest_mass);

printf("Enter velocity in m/s: ");

scanf("%f", &velocity);

// compute observed mass using Einstein’s equation

ratio = velocity / SPEED_OF_LIGHT;

mass = rest_mass / sqrt(1.0 - ratio * ratio);

printf("Observed mass = %1.6f\n", mass);

return 0;

}

COMP1917 c©Alan Blair, UNSW, 2006-2014

