
COMP1521 25T1

COMP1521 25T1

Concurrency, Parallelism and Threads
and Revision

Week 10 Lecture 1

Adapted from Xavier Cooney,
Andrew Taylor and John Shepherd’s slides

COMP1521 25T1

Today’s Lecture
● Concurrency

○ Recap
○ Atomics

● Revision
○ Files
○ Processes

2

COMP1521 25T1

Concurrency & Parallelism

Concurrency: Multiple computations with overlapping time
periods. Does not have to be simultaneous.

Computation A

Computation B

Computation A

Computation B

Parallelism: Multiple computations executing simultaneously.

3

COMP1521 25T1

Threads: concurrency within a process
● Threads allows us to create concurrency within a process

● Threads within a process share the address space:

○ threads share code

○ threads share global variables

○ threads share the heap (malloc)

○ cheap communication!

● Some other process state is shared

○ environment variables, file descriptors, current working directory, …

4

COMP1521 25T1

Threads: concurrency within a process
● Threads allows us to create concurrency within a process

● Each thread has a separate execution state
○ Separate registers, separate program counter

● Each thread has a separate stack
○ but a thread can still read/write to another thread’s stack

● Each thread gets its own copy or errno!

5

COMP1521 25T1

Using POSIX Threads (pthreads)
● POSIX Threads is a widely-supported threading model
● Provides an API/model for managing threads (and synchronisation)

#include <pthread.h>

● Sometimes need -pthread when compiling
● C11 and later also provides a model/API similar to pthreads

○ Has some small differences with pthreads, and generally
less-supported and less used (for now…)

6

COMP1521 25T1

Creating threads with pthread_create
int pthread_create(pthread_t *restrict thread,
 const pthread_attr_t *restrict attr,
 void *(*start_routine)(void *),
 void *restrict arg);

● Starts a new thread running start_routine(arg)
● An ID for the thread is stored in thread
● Thread has attributes specified in attr (NULL if you don’t want

special attributes)
● Returns 0 if OK, otherwise an error number (does not set errno!)
● Analogous to posix_spawn.

7

COMP1521 25T1

Waiting for threads with pthread_join
int pthread_join(pthread_t thread, void **retval);

● Waits for thread to terminate, if it hasn’t already terminated
● Return/exit value of thread placed in *retval
● Analogous to waitpid

● When main returns, all threads terminate

8

COMP1521 25T1

Demo: bank_account_broken.c

Incrementing a global variable is NOT an atomic operation

Unsafe Access to Global Variables

9

COMP1521 25T1

If bank_account = 42 and two threads execute concurrently

Global Variables and Race Condition

10

Oops! We lost an increment.
Threads share global variables! Data race example | Xavier

https://cgi.cse.unsw.edu.au/~xavc/data-race/

COMP1521 25T1

If bank_account = 100 and two threads execute concurrently

Global Variables and Race Condition

11

● This is a critical section.
● We don’t want two threads in the critical section

○ We must establish mutual exclusion.

COMP1521 25T1

A solution: mutexes
● We need a way of guaranteeing mutual exclusion for certain

shared resources (such as bank_account)
● We associate each of those resources with a mutex
● Only one thread can hold a mutex, any other threads which

attempt to lock the mutex must wait until the mutex is unlocked
● So only one thread will be executing the section between the

mutex lock and the mutex unlock

int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);

12

COMP1521 25T1

int bank_account=0;

pthread_mutex_t bank_account_lock=PTHREAD_MUTEX_INITIALIZER;

void *add_100000(void*argument){

for (int i = 0; i < 1000000; i++) {

 pthread_mutex_lock(&bank_account_lock);

 // only one thread can execute this

 // section of code at any time

 bank_account = bank_account + 1;

 pthread_mutex_unlock(&bank_account_lock);

}

bank_account_mutex.c

13

COMP1521 25T1

Atomics
● With hardware support, we can avoid data races without

needing to use locks!
● In C, we can use ‘atomic types’, which guarantee that certain

operations using them will be performed atomically (indivisibly)
⇒ no data race!

● Also avoids overhead of mutexes
● And since no locks are involved, we can’t introduce deadlock
● Atomics don’t solve all concurrency problems
● There are still some subtle problems (which we don’t cover in

COMP1521)
● 14

COMP1521 25T1

Atomics
● Declaring an atomic variable

○ atomic_int x = 10;

○ x += 1; // Will be done atomically

○ x = x + 1; //Will NOT be done atomically!!!!

● A subset of functions in stdatomic.h:
○ atomic_fetch_add

■ atomic_int x = 10;

■ int old = atomic_fetch_add(&x, 1);

○ atomic_fetch_sub
○ atomic_fetch_or, atomic_fetch_xor, atomic_fetch_and

15

COMP1521 25T1

atomic_int bank_account = 0;

void *add_100000(void *argument) {

 for (int i = 0; i < 100000; i++) {

 // NOTE: This *cannot* be `bank_account = bank_account + 1`,

 // as that will not be atomic!

 // However, `bank_account++` would be okay

 // `atomic_fetch_add(&bank_account, 1)` would also be okay

 bank_account += 1;

 }

Add code with atomic in it

16

COMP1521 25T1

Concurrency is really complex!
● This is just a taste of concurrency!
● Other fun concurrency problems/concepts: livelock, starvation,

thundering herd, memory ordering, semaphores, software
transactional memory, user threads, fibers, etc.

● A number of courses at UNSW offer more:
○ COMP3231/COMP3891: [Extended] operating systems

○ COMP6991: Solving Modern Programming Problems with Rust

○ … and more!

17

COMP1521 25T1

● File revision:
○ Find files in a directory with given properties
○ Search through subdirectories for broken symlinks

● Process revision:
○ Create a simple shell using posix_spawn

Revision

18

COMP1521 25T1

● Concurrency and threads
○ recap
○ atomics

● Revision
○ Files

■ Stat
■ Reading a directory
■ Reading a file
■ sub - directory traversal

○ Processes
■ Simple shell

What we learnt Today

COMP1521 25T1

Find out about the Final Exam!

Next Lecture

COMP1511/COMP1911

Feedback Please!
Your feedback is valuable!

If you have any feedback from
today's lecture, please follow the
link below or use the QR Code.

Please remember to keep your
feedback constructive, so I can
action it and improve your
learning experience.

21

https://forms.office.com/r/ttMzsAC9b6

COMP1521 25T1 22

Content Related Questions:
Forum

Admin related Questions email:
cs1521@cse.unsw.edu.au

Reach Out

https://discourse01.cse.unsw.edu.au/25T1/COMP1521/
mailto:cs1521@cse.unsw.edu.au

COMP1521 25T1

Student Support | I Need Help With…

23

— student.unsw.edu.au/advisorsStudent Support
Indigenous Student
Support

Equity Diversity and Inclusion
(EDI)

— edi.unsw.edu.au/sexual-misconduct

Equitable Learning Service
(ELS)

— student.unsw.edu.au/els

Academic Language
Skills

— student.unsw.edu.au/skills

Special Consideration — student.unsw.edu.au/special-consideration

My Feelings and Mental
Health

Managing Low Mood, Unusual Feelings & Depression

Mental Health
Connect

Mind
HUB

student.unsw.edu.au/counselling
Telehealth

student.unsw.edu.au/mind-hub
Online Self-Help Resources

1300 787 026
5pm-9am

In Australia Call Afterhours
UNSW Mental Health Support
Line

Outside Australia
Afterhours 24-hour
Medibank Hotline

+61 (2) 8905 0307

Uni and Life Pressures
Stress, Financial, Visas, Accommodation & More

Reporting Sexual Assault/Harassment

Educational Adjustments
To Manage my Studies and Disability / Health Condition

Academic and Study Skills

Special Consideration
Because Life Impacts our Studies and Exams

