COMP1521 2572

Week 10 Lecture 1

Concurrency, Parallelism and Threads
and Virtual Memory

Adapted from Angela Finlayson, Xavier Cooney,
Andrew Taylor and John Shepherd's slides

COMP1521 25T2

Announcements

Assignment 2: Due this Friday 18:00!
Optional practice exams:
e Held during lab time this week
e Virtual exam environment
o See what is available and what is not.

o Become familiar with the environment before the exam.

o Answer practice questions.

e Week 10 lab work must still be submitted.

COMP1521 25T2

Today's Lecture
e Concurrency and threads
o Recap pthreads and mutexes

o Deadlock
o Atomics

o Virtual Memory

COMP1521 25T2

Concurrency & Parallelism

Concurrency: Multiple computations with overlapping time
periods. Does not have to be simultaneous.

< >
Computation A~ =e—— [E— —

Computation B E—

< >

Parallelism: Multiple computations executing simultaneously.

< >

Computation A

Computation B

COMP1521 25T2

Threads: parallelism within a process

e Threads allows us to create concurrency within a process
e Threads within a process share the address space:

o Threads share code

o Threads share global variables

o Threads share the heap (malloc)
e Some other process state is shared

o environment variables, file descriptors, current working directory, ...

COMP1521 25T2

Threads: parallelism within a process

e Each thread has a separate execution state

o Often called the Thread Control Block (TCB)

o Includes CPU register values (including the program counter)
e Each thread has it's own stack

o But a thread can still read/write to another thread’s stack

e Each thread gets its own copy of errno!

COMP1521 25T2

Creating threads with pthread_create

int pthread_create(pthread_t *restrict thread,
const pthread_attr_t *restrict attr,
void *(*start_routine)(void *),
void *restrict arg);
o Starts a new thread running start_routine(arg)
e Information about the new thread stored in thread
e Thread has attributes specified in attr (NULL if you don’t want
special attributes)
e Returns 0 if OK, otherwise an error number (does not set errno!)
o Analogous to posix_spawn.

COMP1521 25T2

Data Lifetime Issues

e When sharing data with a thread, we pass in the addresses of data
o What if by the time the thread reads the data, that data no longer
exists or has changed?

e The return value of a thread is also an address.

o Isthe memory allocated and it's content at that address still valid
once the thread returns?

COMP1521 25T2

Waiting for threads with pthread_join

int pthread join(pthread t thread, void **retval);

o Waits for thread to terminate, if it hasn't already terminated
e Return/exit value of thread placed in *retval
e Analogous to waitpid

e When main returns, all threads terminate

COMP1521 25T2

A graph of the performance of thread_sum.c

avg time (s) vs. n_threads (summing to 10,000,000,000)

8

avg time (s)
N

n_threads

COMP1521 25T2

10

Some other concurrency benefits

e One thread can wait for I/0 (block) while others make progress
or wait for other I/0
e Useful for user interface programming

COMP1521 25T2

11

Global Variables and Race Condition

If bank_account = 100 and two threads execute concurrently

la $t0, bank_account la $t0, bank_account

{| bank_account = 100 [} # {| bank_account = 100 |}

lw $t1, ($tO) Tw $t1, ($to)

{] $t1 = 100 [} # {] $t1 = 100 |}

addi $t1, $t1, 100 addi $t1, $t1, -50

{| $t1 = 200 |} 24l Stl = 50 [}

sw $t1, ($tO) sw $t1, ($to)

i {| bank account = ...2 |} # {| bank _account = 50 or 200

e This is a critical section.

e We want only one thread in the critical section at a time

o We must establish mutual exclusion.
COMP1521 25T2

/ e

12

A solution: mutexes

o We need a way of guaranteeing mutual exclusion for certain
shared resources (such as bank_account)

o We associate each of those resources with a mutex

e Only one thread can hold a mutex, any other threads which
attempt to lock the mutex must wait until the mutex is unlocked

e So only one thread will be executing the section between the
mutex lock and the mutex unlock

int pthread mutex lock(pthread mutex t *mutex);
int pthread mutex unlock (pthread mutex t *mutex);

COMP1521 25T2 13

bank _account_mutex.c

int bank account=0;
pthread mutex t bank account lock=PTHREAD MUTEX INITIALIZER;

void *add 100000 (void*argument) {
for (int 1 = 0; i < 1000000; i++) {
pthread mutex lock (&bank account lock);
// only one thread can execute this
// section of code at any time
bank account = bank account + 1;

pthread mutex unlock (&bank account lock);

}

COMP1521 25T2

14

Code Demo: Deadlock

bank_account_deadlock.c

COMP1521 25T2

geek & poke

SIMPLY EXPLAINED

DOES IT
WORK?

1

—H

1

CONCURRENCY

15

Deadlocks

THREAD 1

1.

2
3.
4.
3}

COMP1521 25T2

acquire lock_A
acquire lock_B
do_somthing(A, B)
release lock_B
release lock A

THREAD 2

1.

2
3.
4.
3}

acquire lock_B
acquire lock_A
do_somthing(A, B)
release lock_A
release lock_B

16

Solving deadlocks

e A simple rule to avoid deadlocks:
o All thread must acquire locks in the same order

o (also good if locks are released in reverse order, if possible)
e e.g., always acquire lock_A before lock_B

THREAD 1 THREAD 2

1. acquire lock_A 1. acquire lock_A

2. acquire lock B 2. acquire lock_B

3. do_somthing(A, B) 3. do_somthing(A, B)
4. release lock B 4. release lock B

5. release lock A 5. release lock A

COMP1521 25T2 17

Atomics

e With hardware support, we can avoid data races without
needing to use locks!

e In C, we can use ‘atomic types’, which guarantee that certain
operations using them will be performed atomically (indivisibly)
= no data race!

e Also avoids overhead of mutexes

e And since no locks are involved, we can't introduce deadlock

e Atomics don't solve all concurrency problems

e There are still some subtle problems (which we don't cover in
COMP1521)

COMP1521 25T2 18

Atomics

e Declaring an atomic variable
© atomic int x = 10;
O x += 1; // Will be done atomically

o x=x+ 1; //WIillNOT be done atomically!!!!

e A subset of functions in stdatomic.h:
o atomic_fetch_add
= atomic_int x = 10;
= int old = atomic fetch add(&x, 1);
o atomic_fetch_sub

o atomic_fetch_or, atomic_fetch_xor, atomic_fetch_and
COMP1521 25T2

19

Add code with atomic in it

atomic_int bank account = 0;

void *add 100000 (void *argument) {
for (int 1 = 0; i < 100000; i++) {

// NOTE: This *cannot* be ‘bank account = bank account + 1°,

// as that will not be atomic!
// However, ‘bank account++ would be okay

// “atomic fetch add(&bank account, 1) would also be okay
bank account += 1;

COMP1521 25T2

20

Concurrency is really complex!

e This is just a taste of concurrency!

o Other fun concurrency problems/concepts: livelock, starvation,
thundering herd, memory ordering, semaphores, software
transactional memory, user threads, fibers, etc.

e A number of courses at UNSW offer more:
o COMP3231/COMP3891: [Extended] operating systems
o COMP3151: Foundations of Concurrency
o COMP6991: Solving Modern Programming Problems with Rust

o ..and more!
COMP1521 25T2

21

Virtual Memory

(A short intro)

22

Virtual memory goals

o System RAM location and size differs across machines

o How can we provide an abstract view of memory to hide these
details from applications?

e Multi-processing

o How can we concurrently run two applications that expect to be
at the same memory address?

COMP1521 25T2

23

Memory regions

[psize-T]

0]
“Hello” =—
-
g

code data heap
machine code giobal vars mallocd
for prograrm and constants objects
goes here go here go here

COMP1521 25T2

vV

stack

local vars,
parameters
go here

24

RAM partitioning

(0]

proci
memory

proc3
memory

proc4
memaory

[max-1]

proct
memory

e Every process in a contiguous region of RAM, starting from
address base and finishing at address limit

e Each process sees it's own address space as [0 .. psize-1]

e Process can be loaded anywhere in memory unchanged

o Address a translated to a + base

e Access check to ensure a + base < limit

o Easy to implement in hardware

COMP1521 25T2

25

What if we want to add a new process?

proc?
[0) ey [(max-1]
proci] ;J;‘L-JS-E'-d-] proc3 procd -L:r;u-séc-:] procé
memory | memaory memory { memaory
o New process doesn't fit in unused fragments
e Must move other process to defragment memory
(@] [max-1]
proci procd proc3 proc? L-_]:) proct
memaory memaorry memaory memaory L memaory

o Defragmentation reduces system performance

o Search for free space, copy memory, etc

COMP1521 25T2

26

Split processes

o l|dea: split process memory over multiple regions

proc?
memaory
(0] [max-1]
proci unused proc3 proc4 InUsed procé
memory memaory memory memory
(0] [max-1]
proci proc? proc3 proc4 Proc? | .ced proct
memory memory1 memaory memory | memory2 | memory
[e] [a-1] [a] [p7size-1]

COMP1521 25T2

27

Virtual memory with pages

e Bigidea: make all segments the same size (a power of 2)
o Call each segment of address space a page of size P
o Translation of address can be implemented as array
o Each process has an array called it's page table

o Each array element contains the physical address in RAM of the
corresponding page

o Given virtual address V and page size P:
physical_address = page_table[V/P] + V%P

o Simple to implement in silicon using bitops with P being pow?2
COMP1521 25T2 28

Page mapping

e Since P == 2", some bits (offset) are the same in virtual and
physical address

Virtual address

(aka Process address)

Page#

Offset

COMP1521 25T2

Mapping

Physical address

(aka Memory address)

Frame# Offset

P=2"
Offset = bits[0..n-1]

Page# = bits[n..32]
Frame# = bits[n..32]

29

Process page tables with memory sharing

Process A
page table

Physical
memory

Process B
page table

-
-
-
-
-
-
-
-
o

COMP1521 25T2

Note: For 32 bit address space and
4096 Byte pages, page table size is ~
1 M entries!

How many entries for a 64 bit address
space?

Memory efficient page table
representations out of scope of this
course.

COMP3231/3891: Operating Systems
covers virtual memory in more detail.

30

Lazy loading

e How much of our memory segments must be loaded before a
program can execute?

o .text?
o .data?

o orjust main(...) and a stack?

COMP1521 25T2

31

Lazy loading

e How much of our memory segments must be loaded before a
program can execute?

o .text?
o .data?
o orjust main(...) and a stack?

o Nothing at all?

COMP1521 25T2

32

Lazy loading

o ldea:
o Don't allocate pages
o Link page table entries to files and offsets

o When page is accessed, intercept SIGSEGV, load file content, then
resume

o Pages only loaded when needed

o Some pages may never be loaded

COMP1521 25T2

33

fork() optimisations

o Mark all pages read only

o Copy the address space -- the page table -- not memory

e Both parent and child share physical memory

o When page is written, intercept SIGSEGV, copy the page, update
the page table, add write permissions, resume.

COMP1521 25T2

34

Software RAM

COMP1521 25T2

35

Software RAM-Swapping

e Three options when system is out of RAM:
o Pause a process until memory is available
o Kill a process (we can't pause the 0OS!)

o Swapping: Temporarily move memory to disk to free that memory
for other more immediate uses

s Mac/Linux uses swap files/partitions

= Windows uses a pagefile

COMP1521 25T2

36

Software RAM

COMP1521 25T2

For $80, increases windows
pagefile size setting on your behalf,
thereby increasing memory limits.

Also provides a fancy dashboard to
show how much "RAM" you got for
your money.

37

Swapping

o Similar operation to lazy loading, but page data contained in
swap file

O

O

Link page table entry to file and file offset.
Intercept SIGSEGV to load the page back in on demand

e How to choose which page to move to disk?

O

O

O

©)
COMP1521 25T2

Best page is one that won't be used again by its process
Prefer pages that are read-only and already on disk
Prefer pages that are unmodified and already on disk

Prefer pages that are used by only one process
38

Swapping

e OS can't predict whether a page will be required again by its
process
e But we do know whether it has been used recently (if we track

this)
e One good heuristic - replace Least Recently Used (LRU) page.

o Page not used recently probably not needed again soon

COMP1521 25T2 39

What we learnt Today

e Concurrency and threads
o Recap pthreads and mutexes
o deadlock
o atomics

o Virtual memory

COMP1521 25T2

Next Lecture

Find out about the Final Exam!

COMP1521 25T2

Reach Out

Content Related Questions:
Forum

Admin related Questions email:
cs1521(@cse.unsw.edu.au

COMP1521 25T2

42

https://discourse02.cse.unsw.edu.au/25T2/COMP1521/
mailto:cs1521@cse.unsw.edu.au

Student Support | | Need Help With...

student.unsw.edu.au/counselling a In Australia Call Afterhours 1300 787 026
_ @ E'::;Z'c':ea'th Telehealth RS UNSW Mental Health Support 5pm-9am
My Feelings and Mental Line
Health q student.unsw.edu.au/mind-hub Outside Australia
Managing Low Mood, Unusual Feelings & Depression Mind Online Self-Help Resources @ Afterhours 24-hour +61 (2) 8905 0307
HUB Medibank Hotline
m Student Support — student.unsw.edu.au/advisors
' Indigenous Student
Support
Reporting Sexual Assault/Harassment Equity Diversity and Inclusion — edi.unsw.edu.au/sexual-misconduct
(EDI)
Educational Adjustments q q .
To Manage my Studies and Disability / Health Condition Equitable Learning Service — student.unsw.edu.aulels
(ELS)
Academic and Study Skills Academic Language — student.unsw.edu.au/skills
Skills
Sppeel Lencld e Special Consideration — student.unsw.edu.au/special-consideration

Because Life Impacts our Studies and Exams

COMP1521 25T2

	Slide 1: COMP1521 25T2
	Slide 2: Announcements
	Slide 3: Today’s Lecture
	Slide 4: Concurrency & Parallelism
	Slide 5: Threads: parallelism within a process
	Slide 6: Threads: parallelism within a process
	Slide 7: Creating threads with pthread_create
	Slide 8: Data Lifetime Issues
	Slide 9: Waiting for threads with pthread_join
	Slide 10: A graph of the performance of thread_sum.c
	Slide 11: Some other concurrency benefits
	Slide 12: Global Variables and Race Condition
	Slide 13: A solution: mutexes
	Slide 14: bank_account_mutex.c
	Slide 15: Code Demo: Deadlock
	Slide 16: Deadlocks
	Slide 17: Solving deadlocks
	Slide 18: Atomics
	Slide 19: Atomics
	Slide 20: Add code with atomic in it
	Slide 21: Concurrency is really complex!
	Slide 22: Virtual Memory
	Slide 23: Virtual memory goals
	Slide 24: Memory regions
	Slide 25: RAM partitioning
	Slide 26: What if we want to add a new process?
	Slide 27: Split processes
	Slide 28: Virtual memory with pages
	Slide 29: Page mapping
	Slide 30: Process page tables with memory sharing
	Slide 31: Lazy loading
	Slide 32: Lazy loading
	Slide 33: Lazy loading
	Slide 34: fork() optimisations
	Slide 35: Software RAM
	Slide 36: Software RAM Swapping
	Slide 37: Software RAM
	Slide 38: Swapping
	Slide 39: Swapping
	Slide 40: What we learnt Today
	Slide 41: Next Lecture
	Slide 42: Reach Out
	Slide 43: Student Support | I Need Help With…

