COMP1521 2572

Week 10 Lecture 1

Concurrency, Parallelism and Threads
and Virtual Memory

Adapted from Angela Finlayson, Xavier Cooney,
Andrew Taylor and John Shepherd's slides
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Announcements

Assignment 2: Due this Friday 18:00!
Optional practice exams:
e Held during lab time this week
e Virtual exam environment
o See what is available and what is not.

o Become familiar with the environment before the exam.

o Answer practice questions.

e Week 10 lab work must still be submitted.
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Today's Lecture
e Concurrency and threads
o Recap pthreads and mutexes

o Deadlock
o Atomics

o Virtual Memory
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Concurrency & Parallelism

Concurrency: Multiple computations with overlapping time
periods. Does not have to be simultaneous.
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Parallelism: Multiple computations executing simultaneously.

< >

Computation A

Computation B
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Threads: parallelism within a process

e Threads allows us to create concurrency within a process
e Threads within a process share the address space:

o Threads share code

o Threads share global variables

o Threads share the heap (malloc)
e Some other process state is shared

o environment variables, file descriptors, current working directory, ...
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Threads: parallelism within a process

e Each thread has a separate execution state

o Often called the Thread Control Block (TCB)

o Includes CPU register values (including the program counter)
e Each thread has it's own stack

o But a thread can still read/write to another thread’s stack

e Each thread gets its own copy of errno!
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Creating threads with pthread_create

int pthread_create(pthread_t *restrict thread,
const pthread_attr_t *restrict attr,
void *(*start_routine)(void *),
void *restrict arg);
o Starts a new thread running start_routine(arg)
e Information about the new thread stored in thread
e Thread has attributes specified in attr (NULL if you don’t want
special attributes)
e Returns 0 if OK, otherwise an error number (does not set errno!)
o Analogous to posix_spawn.
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Data Lifetime Issues

e When sharing data with a thread, we pass in the addresses of data
o What if by the time the thread reads the data, that data no longer
exists or has changed?

e The return value of a thread is also an address.

o Isthe memory allocated and it's content at that address still valid
once the thread returns?
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Waiting for threads with pthread_join

int pthread join(pthread t thread, void **retval);

o Waits for thread to terminate, if it hasn't already terminated
e Return/exit value of thread placed in *retval
e Analogous to waitpid

e When main returns, all threads terminate
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A graph of the performance of thread_sum.c

avg time (s) vs. n_threads (summing to 10,000,000,000)
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Some other concurrency benefits

e One thread can wait for I/0 (block) while others make progress
or wait for other I/0
e Useful for user interface programming
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Global Variables and Race Condition

If bank_account = 100 and two threads execute concurrently

la $t0, bank_account la $t0, bank_account

# {| bank_account = 100 [} # {| bank_account = 100 |}

lw $t1, ($tO) Tw $t1, ($to)

# {] $t1 = 100 [} # {] $t1 = 100 |}

addi $t1, $t1, 100 addi $t1, $t1, -50

# {| $t1 = 200 |} 24l Stl = 50 [}

sw $t1, ($tO) sw $t1, ($to)

i {| bank account = ...2 |} # {| bank _account = 50 or 200

e This is a critical section.

e We want only one thread in the critical section at a time

o We must establish mutual exclusion.
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A solution: mutexes

o We need a way of guaranteeing mutual exclusion for certain
shared resources (such as bank_account)

o We associate each of those resources with a mutex

e Only one thread can hold a mutex, any other threads which
attempt to lock the mutex must wait until the mutex is unlocked

e So only one thread will be executing the section between the
mutex lock and the mutex unlock

int pthread mutex lock(pthread mutex t *mutex);
int pthread mutex unlock (pthread mutex t *mutex);
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bank _account_mutex.c

int bank account=0;
pthread mutex t bank account lock=PTHREAD MUTEX INITIALIZER;

void *add 100000 (void*argument) {
for (int 1 = 0; i < 1000000; i++) {
pthread mutex lock (&bank account lock);
// only one thread can execute this
// section of code at any time
bank account = bank account + 1;

pthread mutex unlock (&bank account lock);

}
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Code Demo: Deadlock

bank_account_deadlock.c
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geek & poke

SIMPLY EXPLAINED

DOES IT
WORK?
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Deadlocks

THREAD 1

1.

2
3.
4.
3}
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acquire lock_A
acquire lock_B
do_somthing(A, B)
release lock_B
release lock A

THREAD 2

1.

2
3.
4.
3}

acquire lock_B
acquire lock_A
do_somthing(A, B)
release lock_A
release lock_B
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Solving deadlocks

e A simple rule to avoid deadlocks:
o All thread must acquire locks in the same order

o (also good if locks are released in reverse order, if possible)
e e.g., always acquire lock_A before lock_B

THREAD 1 THREAD 2

1. acquire lock_A 1. acquire lock_A

2. acquire lock B 2. acquire lock_B

3. do_somthing(A, B) 3. do_somthing(A, B)
4. release lock B 4. release lock B

5. release lock A 5. release lock A
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Atomics

e With hardware support, we can avoid data races without
needing to use locks!

e In C, we can use ‘atomic types’, which guarantee that certain
operations using them will be performed atomically (indivisibly)
= no data race!

e Also avoids overhead of mutexes

e And since no locks are involved, we can't introduce deadlock

e Atomics don't solve all concurrency problems

e There are still some subtle problems (which we don't cover in
COMP1521)
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Atomics

e Declaring an atomic variable
© atomic int x = 10;
O x += 1; // Will be done atomically

o x=x+ 1; //WIillNOT be done atomically!!!!

e A subset of functions in stdatomic.h:
o atomic_fetch_add
= atomic_int x = 10;
= int old = atomic fetch add(&x, 1);
o atomic_fetch_sub

o atomic_fetch_or, atomic_fetch_xor, atomic_fetch_and
COMP1521 25T2
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Add code with atomic in it

atomic_int bank account = 0;

void *add 100000 (void *argument) {
for (int 1 = 0; i < 100000; i++) {

// NOTE: This *cannot* be ‘bank account = bank account + 1°,

// as that will not be atomic!
// However, ‘bank account++  would be okay

// “atomic fetch add(&bank account, 1)  would also be okay
bank account += 1;
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Concurrency is really complex!

e This is just a taste of concurrency!

o Other fun concurrency problems/concepts: livelock, starvation,
thundering herd, memory ordering, semaphores, software
transactional memory, user threads, fibers, etc.

e A number of courses at UNSW offer more:
o COMP3231/COMP3891: [Extended] operating systems
o COMP3151: Foundations of Concurrency
o COMP6991: Solving Modern Programming Problems with Rust

o ..and more!
COMP1521 25T2
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Virtual Memory

(A short intro)
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Virtual memory goals

o System RAM location and size differs across machines

o How can we provide an abstract view of memory to hide these
details from applications?

e Multi-processing

o How can we concurrently run two applications that expect to be
at the same memory address?

COMP1521 25T2
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Memory regions

[psize-T]

0]
“Hello” =—
-
g

code data heap
machine code giobal vars mallocd
for prograrm and constants  objects
goes here go here go here

COMP1521 25T2

vV

stack
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RAM partitioning

(0]

proci
memory

proc3
memory

proc4
memaory

[max-1]

proct
memory

e Every process in a contiguous region of RAM, starting from
address base and finishing at address limit

e Each process sees it's own address space as [0 .. psize-1]

e Process can be loaded anywhere in memory unchanged

o Address a translated to a + base

e Access check to ensure a + base < limit

o Easy to implement in hardware
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What if we want to add a new process?

proc?
[0) ey [(max-1]
proci ] ;J;‘L-JS-E'-d- ] proc3 procd -L:r;u-séc-: ] procé
memory | memaory memory { memaory
o New process doesn't fit in unused fragments
e Must move other process to defragment memory
(@] [max-1]
proci procd proc3 proc? L-_]: ) proct
memaory memaorry memaory memaory L memaory

o Defragmentation reduces system performance

o Search for free space, copy memory, etc

COMP1521 25T2
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Split processes

o l|dea: split process memory over multiple regions

proc?
memaory
(0] [max-1]
proci unused proc3 proc4 InUsed procé
memory memaory memory memory
(0] [max-1]
proci proc? proc3 proc4 Proc? | .ced proct
memory memory1 memaory memory | memory2 | memory
[e] [a-1] [a] [p7size-1]

COMP1521 25T2
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Virtual memory with pages

e Bigidea: make all segments the same size (a power of 2)
o Call each segment of address space a page of size P
o Translation of address can be implemented as array
o Each process has an array called it's page table

o Each array element contains the physical address in RAM of the
corresponding page

o Given virtual address V and page size P:
physical_address = page_table[V/P] + V%P

o Simple to implement in silicon using bitops with P being pow?2
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Page mapping

e Since P == 2", some bits (offset) are the same in virtual and
physical address

Virtual address

(aka Process address)

Page#

Offset

COMP1521 25T2

Mapping

Physical address

(aka Memory address)

Frame# Offset

P=2"
Offset = bits[0..n-1]

Page# = bits[n..32]
Frame# = bits[n..32]
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Process page tables with memory sharing

Process A
page table

Physical
memory

Process B
page table

-
-
-
-
-
-
-
-
o
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Note: For 32 bit address space and
4096 Byte pages, page table size is ~
1 M entries!

How many entries for a 64 bit address
space?

Memory efficient page table
representations out of scope of this
course.

COMP3231/3891: Operating Systems
covers virtual memory in more detail.
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Lazy loading

e How much of our memory segments must be loaded before a
program can execute?

o .text?
o .data?

o orjust main(...) and a stack?

COMP1521 25T2
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Lazy loading

e How much of our memory segments must be loaded before a
program can execute?

o .text?
o .data?
o orjust main(...) and a stack?

o Nothing at all?

COMP1521 25T2
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Lazy loading

o ldea:
o Don't allocate pages
o Link page table entries to files and offsets

o When page is accessed, intercept SIGSEGV, load file content, then
resume

o Pages only loaded when needed

o Some pages may never be loaded

COMP1521 25T2
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fork() optimisations

o Mark all pages read only

o Copy the address space -- the page table -- not memory

e Both parent and child share physical memory

o When page is written, intercept SIGSEGV, copy the page, update
the page table, add write permissions, resume.

COMP1521 25T2

34



Software RAM

COMP1521 25T2
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Software RAM-Swapping

e Three options when system is out of RAM:
o Pause a process until memory is available
o Kill a process (we can't pause the 0OS!)

o Swapping: Temporarily move memory to disk to free that memory
for other more immediate uses

s Mac/Linux uses swap files/partitions

= Windows uses a pagefile

COMP1521 25T2

36



Software RAM

COMP1521 25T2

For $80, increases windows
pagefile size setting on your behalf,
thereby increasing memory limits.

Also provides a fancy dashboard to
show how much "RAM" you got for
your money.
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Swapping

o Similar operation to lazy loading, but page data contained in
swap file

O

O

Link page table entry to file and file offset.
Intercept SIGSEGV to load the page back in on demand

e How to choose which page to move to disk?

O

O

O

©)
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Best page is one that won't be used again by its process
Prefer pages that are read-only and already on disk
Prefer pages that are unmodified and already on disk

Prefer pages that are used by only one process
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Swapping

e OS can't predict whether a page will be required again by its
process
e But we do know whether it has been used recently (if we track

this)
e One good heuristic - replace Least Recently Used (LRU) page.

o Page not used recently probably not needed again soon
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What we learnt Today

e Concurrency and threads
o Recap pthreads and mutexes
o deadlock
o atomics

o Virtual memory
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Next Lecture

Find out about the Final Exam!
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Reach Out

Content Related Questions:
Forum

Admin related Questions email:
cs1521(@cse.unsw.edu.au

COMP1521 25T2

42


https://discourse02.cse.unsw.edu.au/25T2/COMP1521/
mailto:cs1521@cse.unsw.edu.au

Student Support | | Need Help With...

student.unsw.edu.au/counselling a In Australia Call Afterhours 1300 787 026
_ @ E'::;Z'c':ea'th Telehealth RS  UNSW Mental Health Support  5pm-9am
My Feelings and Mental Line
Health q student.unsw.edu.au/mind-hub Outside Australia
Managing Low Mood, Unusual Feelings & Depression Mind Online Self-Help Resources @ Afterhours 24-hour +61 (2) 8905 0307
HUB Medibank Hotline
m Student Support — student.unsw.edu.au/advisors
' Indigenous Student
Support
Reporting Sexual Assault/Harassment Equity Diversity and Inclusion — edi.unsw.edu.au/sexual-misconduct
(EDI)
Educational Adjustments q q .
To Manage my Studies and Disability / Health Condition Equitable Learning Service — student.unsw.edu.aulels
(ELS)
Academic and Study Skills Academic Language — student.unsw.edu.au/skills
Skills
Sppeel Lencld e Special Consideration — student.unsw.edu.au/special-consideration

Because Life Impacts our Studies and Exams
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