
COMP1521 25T2

COMP1521 25T2

Concurrency, Parallelism and Threads
and Virtual Memory

Week 10 Lecture 1

Adapted from Angela Finlayson, Xavier Cooney,
Andrew Taylor and John Shepherd’s slides

COMP1521 25T2

Assignment 2: Due this Friday 18:00!

Optional practice exams:

● Held during lab time this week

● Virtual exam environment

○ See what is available and what is not.

○ Become familiar with the environment before the exam.

○ Answer practice questions.

● Week 10 lab work must still be submitted.

Announcements

2

COMP1521 25T2

Today’s Lecture

● Concurrency and threads
○ Recap pthreads and mutexes

○ Deadlock

○ Atomics

● Virtual Memory

3

COMP1521 25T2

Concurrency & Parallelism

Concurrency: Multiple computations with overlapping time

periods. Does not have to be simultaneous.

Computation A

Computation B

Computation A

Computation B

Parallelism: Multiple computations executing simultaneously.

4

COMP1521 25T2

Threads: parallelism within a process

● Threads allows us to create concurrency within a process

● Threads within a process share the address space:

○ Threads share code

○ Threads share global variables

○ Threads share the heap (malloc)

● Some other process state is shared

○ environment variables, file descriptors, current working directory, …

5

COMP1521 25T2

Threads: parallelism within a process

● Each thread has a separate execution state

○ Often called the Thread Control Block (TCB)

○ Includes CPU register values (including the program counter)

● Each thread has it's own stack

○ But a thread can still read/write to another thread’s stack

● Each thread gets its own copy of errno!

6

COMP1521 25T2

Creating threads with pthread_create

int pthread_create(pthread_t *restrict thread,
const pthread_attr_t *restrict attr,
void *(*start_routine)(void *),
void *restrict arg);

● Starts a new thread running start_routine(arg)
● Information about the new thread stored in thread

● Thread has attributes specified in attr (NULL if you don’t want

special attributes)

● Returns 0 if OK, otherwise an error number (does not set errno!)

● Analogous to posix_spawn.

7

COMP1521 25T2

● When sharing data with a thread, we pass in the addresses of data

○ What if by the time the thread reads the data, that data no longer

exists or has changed?

● The return value of a thread is also an address.

○ Is the memory allocated and it's content at that address still valid

once the thread returns?

Data Lifetime Issues

8

COMP1521 25T2

Waiting for threads with pthread_join

int pthread_join(pthread_t thread, void **retval);

● Waits for thread to terminate, if it hasn’t already terminated

● Return/exit value of thread placed in *retval

● Analogous to waitpid

● When main returns, all threads terminate

9

COMP1521 25T2

A graph of the performance of thread_sum.c

10

COMP1521 25T2

Some other concurrency benefits

● One thread can wait for I/O (block) while others make progress

or wait for other I/O

● Useful for user interface programming

11

COMP1521 25T2

If bank_account = 100 and two threads execute concurrently

Global Variables and Race Condition

12

● This is a critical section.
● We want only one thread in the critical section at a time

○ We must establish mutual exclusion.

COMP1521 25T2

A solution: mutexes

● We need a way of guaranteeing mutual exclusion for certain

shared resources (such as bank_account)

● We associate each of those resources with a mutex

● Only one thread can hold a mutex, any other threads which

attempt to lock the mutex must wait until the mutex is unlocked

● So only one thread will be executing the section between the

mutex lock and the mutex unlock

int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);

13

COMP1521 25T2

int bank_account=0;

pthread_mutex_t bank_account_lock=PTHREAD_MUTEX_INITIALIZER;

void *add_100000(void*argument){

for (int i = 0; i < 1000000; i++) {

pthread_mutex_lock(&bank_account_lock);

// only one thread can execute this

// section of code at any time

bank_account = bank_account + 1;

pthread_mutex_unlock(&bank_account_lock);

}

bank_account_mutex.c

14

COMP1521 25T2

bank_account_deadlock.c

Code Demo: Deadlock

15

COMP1521 25T2

Deadlocks

THREAD 1

1. acquire lock_A

2. acquire lock_B

3. do_somthing(A, B)

4. release lock_B

5. release lock_A

THREAD 2

1. acquire lock_B

2. acquire lock_A

3. do_somthing(A, B)

4. release lock_A

5. release lock_B

16

COMP1521 25T2

Solving deadlocks

● A simple rule to avoid deadlocks:

○ All thread must acquire locks in the same order

○ (also good if locks are released in reverse order, if possible)

● e.g., always acquire lock_A before lock_B

THREAD 1

1. acquire lock_A

2. acquire lock_B

3. do_somthing(A, B)

4. release lock_B

5. release lock_A

THREAD 2

1. acquire lock_A

2. acquire lock_B

3. do_somthing(A, B)

4. release lock_B

5. release lock_A

17

COMP1521 25T2

Atomics

● With hardware support, we can avoid data races without

needing to use locks!

● In C, we can use ‘atomic types’, which guarantee that certain

operations using them will be performed atomically (indivisibly)

⇒ no data race!

● Also avoids overhead of mutexes

● And since no locks are involved, we can’t introduce deadlock

● Atomics don’t solve all concurrency problems

● There are still some subtle problems (which we don’t cover in

COMP1521)

18

COMP1521 25T2

Atomics

● Declaring an atomic variable

○ atomic_int x = 10;

○ x += 1; // Will be done atomically

○ x = x + 1; //Will NOT be done atomically!!!!

● A subset of functions in stdatomic.h:

○ atomic_fetch_add

■ atomic_int x = 10;

■ int old = atomic_fetch_add(&x, 1);

○ atomic_fetch_sub

○ atomic_fetch_or, atomic_fetch_xor, atomic_fetch_and
19

COMP1521 25T2

atomic_int bank_account = 0;

void *add_100000(void *argument) {

for (int i = 0; i < 100000; i++) {

// NOTE: This *cannot* be `bank_account = bank_account + 1`,

// as that will not be atomic!

// However, `bank_account++` would be okay

// `atomic_fetch_add(&bank_account, 1)` would also be okay

bank_account += 1;

}

Add code with atomic in it

20

COMP1521 25T2

Concurrency is really complex!

● This is just a taste of concurrency!

● Other fun concurrency problems/concepts: livelock, starvation,

thundering herd, memory ordering, semaphores, software

transactional memory, user threads, fibers, etc.

● A number of courses at UNSW offer more:

○ COMP3231/COMP3891: [Extended] operating systems

○ COMP3151: Foundations of Concurrency

○ COMP6991: Solving Modern Programming Problems with Rust

○ … and more!
21

COMP1521 25T2

Virtual Memory
(A short intro)

22

COMP1521 25T2

● System RAM location and size differs across machines

○ How can we provide an abstract view of memory to hide these

details from applications?

● Multi-processing

○ How can we concurrently run two applications that expect to be

at the same memory address?

Virtual memory goals

23

COMP1521 25T2

Memory regions

24

COMP1521 25T2

● Every process in a contiguous region of RAM, starting from

address base and finishing at address limit

● Each process sees it's own address space as [0 .. psize-1]

● Process can be loaded anywhere in memory unchanged

● Address a translated to a + base

● Access check to ensure a + base < limit

● Easy to implement in hardware

RAM partitioning

25

COMP1521 25T2

● New process doesn't fit in unused fragments

● Must move other process to defragment memory

What if we want to add a new process?

26

● Defragmentation reduces system performance

○ Search for free space, copy memory, etc

COMP1521 25T2

● Idea: split process memory over multiple regions

Split processes

27

COMP1521 25T2

● Big idea: make all segments the same size (a power of 2)

○ Call each segment of address space a page of size P

○ Translation of address can be implemented as array

○ Each process has an array called it's page table

○ Each array element contains the physical address in RAM of the

corresponding page

○ Given virtual address V and page size P:

physical_address = page_table[V/P] + V%P

○ Simple to implement in silicon using bitops with P being pow2

Virtual memory with pages

28

COMP1521 25T2

● Since P == 2n, some bits (offset) are the same in virtual and

physical address

Page mapping

29

COMP1521 25T2

Process page tables with memory sharing

30

Process A

page table

Process B

page table

Physical

memory

Note: For 32 bit address space and

4096 Byte pages, page table size is ~

1 M entries!

How many entries for a 64 bit address

space?

Memory efficient page table

representations out of scope of this

course.

COMP3231/3891: Operating Systems

covers virtual memory in more detail.

COMP1521 25T2

● How much of our memory segments must be loaded before a

program can execute?

○ .text?

○ .data?

○ or just main(...) and a stack?

Lazy loading

31

COMP1521 25T2

● How much of our memory segments must be loaded before a

program can execute?

○ .text?

○ .data?

○ or just main(...) and a stack?

○ Nothing at all?

Lazy loading

32

COMP1521 25T2

● Idea:

○ Don't allocate pages

○ Link page table entries to files and offsets

○ When page is accessed, intercept SIGSEGV, load file content, then

resume

○ Pages only loaded when needed

○ Some pages may never be loaded

Lazy loading

33

COMP1521 25T2

● Mark all pages read only

● Copy the address space -- the page table -- not memory

● Both parent and child share physical memory

● When page is written, intercept SIGSEGV, copy the page, update

the page table, add write permissions, resume.

fork() optimisations

34

COMP1521 25T2

Software RAM

35

COMP1521 25T2

● Three options when system is out of RAM:

○ Pause a process until memory is available

○ Kill a process (we can't pause the OS!)

○ Swapping: Temporarily move memory to disk to free that memory

for other more immediate uses

■ Mac/Linux uses swap files/partitions

■ Windows uses a pagefile

Software RAM Swapping

36

COMP1521 25T2

Software RAM

37

For $80, increases windows

pagefile size setting on your behalf,

thereby increasing memory limits.

Also provides a fancy dashboard to

show how much "RAM" you got for

your money.

COMP1521 25T2

● Similar operation to lazy loading, but page data contained in
swap file

○ Link page table entry to file and file offset.

○ Intercept SIGSEGV to load the page back in on demand

● How to choose which page to move to disk?

○ Best page is one that won’t be used again by its process

○ Prefer pages that are read-only and already on disk

○ Prefer pages that are unmodified and already on disk

○ Prefer pages that are used by only one process

Swapping

38

COMP1521 25T2

● OS can’t predict whether a page will be required again by its

process

● But we do know whether it has been used recently (if we track

this)

● One good heuristic - replace Least Recently Used (LRU) page.

○ Page not used recently probably not needed again soon

Swapping

39

COMP1521 25T2

● Concurrency and threads

○ Recap pthreads and mutexes

○ deadlock

○ atomics

● Virtual memory

What we learnt Today

COMP1521 25T2

Find out about the Final Exam!

Next Lecture

COMP1521 25T2 42

Content Related Questions:

Forum

Admin related Questions email:

cs1521@cse.unsw.edu.au

Reach Out

https://discourse02.cse.unsw.edu.au/25T2/COMP1521/
mailto:cs1521@cse.unsw.edu.au

COMP1521 25T2

Student Support | I Need Help With…

43

— student.unsw.edu.au/advisorsStudent Support
Indigenous Student

Support

Equity Diversity and Inclusion

(EDI)

— edi.unsw.edu.au/sexual-misconduct

Equitable Learning Service

(ELS)

— student.unsw.edu.au/els

Academic Language

Skills

— student.unsw.edu.au/skills

Special Consideration — student.unsw.edu.au/special-consideration

My Feelings and Mental

Health

Managing Low Mood, Unusual Feelings & Depression

Mental Health

Connect

Mind

HUB

student.unsw.edu.au/counselling

Telehealth

student.unsw.edu.au/mind-hub

Online Self-Help Resources

1300 787 026

5pm-9am

In Australia Call Afterhours

UNSW Mental Health Support

Line

Outside Australia

Afterhours 24-hour

Medibank Hotline

+61 (2) 8905 0307

Uni and Life Pressures

Stress, Financial, Visas, Accommodation & More

Reporting Sexual Assault/Harassment

Educational Adjustments

To Manage my Studies and Disability / Health Condition

Academic and Study Skills

Special Consideration

Because Life Impacts our Studies and Exams

	Slide 1: COMP1521 25T2
	Slide 2: Announcements
	Slide 3: Today’s Lecture
	Slide 4: Concurrency & Parallelism
	Slide 5: Threads: parallelism within a process
	Slide 6: Threads: parallelism within a process
	Slide 7: Creating threads with pthread_create
	Slide 8: Data Lifetime Issues
	Slide 9: Waiting for threads with pthread_join
	Slide 10: A graph of the performance of thread_sum.c
	Slide 11: Some other concurrency benefits
	Slide 12: Global Variables and Race Condition
	Slide 13: A solution: mutexes
	Slide 14: bank_account_mutex.c
	Slide 15: Code Demo: Deadlock
	Slide 16: Deadlocks
	Slide 17: Solving deadlocks
	Slide 18: Atomics
	Slide 19: Atomics
	Slide 20: Add code with atomic in it
	Slide 21: Concurrency is really complex!
	Slide 22: Virtual Memory
	Slide 23: Virtual memory goals
	Slide 24: Memory regions
	Slide 25: RAM partitioning
	Slide 26: What if we want to add a new process?
	Slide 27: Split processes
	Slide 28: Virtual memory with pages
	Slide 29: Page mapping
	Slide 30: Process page tables with memory sharing
	Slide 31: Lazy loading
	Slide 32: Lazy loading
	Slide 33: Lazy loading
	Slide 34: fork() optimisations
	Slide 35: Software RAM
	Slide 36: Software RAM Swapping
	Slide 37: Software RAM
	Slide 38: Swapping
	Slide 39: Swapping
	Slide 40: What we learnt Today
	Slide 41: Next Lecture
	Slide 42: Reach Out
	Slide 43: Student Support | I Need Help With…

