
COMP1521 25T1

COMP1521 25T1

Concurrency, Parallelism and Threads

Week 9 Lecture 2

Adapted from Xavier Cooney,
Andrew Taylor and John Shepherd’s slides

COMP1521 25T1

Weekly test 8 due tomorrow
Extra help sessions and catch up classes

COMP1521 25T1 — COMP1521 Help Sessions

Exam Preferences form:

https://cgi.cse.unsw.edu.au/~exam/25T1/seating/register.cgi

Assignment 2: Get started ASAP if you have not already.

● Help sessions and forums will be very BUSY soon…
● You still have a chance to get help in tut/labs now too!

Announcements

https://cgi.cse.unsw.edu.au/~cs1521/25T1/help-sessions/
https://cgi.cse.unsw.edu.au/~exam/25T1/seating/register.cgi

COMP1521 25T1

Today’s Lecture
● Concurrency
● Threads
● Mutexes
● Atomics

3

COMP1521 25T1

Concurrency & Parallelism

Concurrency: Multiple computations with overlapping time
periods. Does not have to be simultaneous.

Computation A

Computation B

Computation A

Computation B

Parallelism: Multiple computations executing simultaneously.

4

COMP1521 25T1

Have we already seen concurrency in this course?
What about parallelism?

Question

5

COMP1521 25T1

COMP1521 25T1

Flynn’s Taxonomy for Classifying Parallelism
SISD: Single Instruction, Single Data (“no parallelism”)

● e.g. mipsy
SIMD: Single Instruction, Multiple Data (“vector processing”)

● Multiple cores of a CPU executing (parts of) same instruction
● e.g. GPUs (graphics rendering and training and running neural

networks e.g. LLMs)
MISD: Multiple Instruction, Single Data

● e.g., fault tolerance in space shuttles (task replication)
MIMD: Multiple Instruction, Multiple Data (“multiprocessing”)

● Multiple cores of a CPU executing different instructions

7

COMP1521 25T1

Parallel computing
● Distributing computation across multiple computers

○ One popular framework is MapReduce

○ Necessary for very big computations and very large sets of data

○ Can be difficult to deal with
synchronisation and failure
of machines

○ Out of scope for COMP1521

8

https://en.wikipedia.org/wiki/MapReduce

COMP1521 25T1

Concurrency with processes
● Create multiple processes, and split the job across them
● Each process

○ runs concurrently
○ has its own address space (giving isolation)

● Processes can be distributed across cores, giving parallelism
● But this strategy is expensive!

○ Creation/teardown expensive
○ Switching expensive
○ Lots of state per process

 ⇒ costs memory
○ Communication can be

complicated and expensive
9

COMP1521 25T1

Threads: concurrency within a process
● Threads allows us to create concurrency within a process

● Threads within a process share the address space:

○ threads share code

○ threads share global variables

○ threads share the heap (malloc)

○ cheap communication!

● Some other process state is shared

○ environment variables, file descriptors, current working directory, …

10

COMP1521 25T1

Threads: concurrency within a process
● Threads allows us to create concurrency within a process

● Each thread has a separate execution state
○ Separate registers, separate program counter

● Each thread has a separate stack
○ but a thread can still read/write to another thread’s stack

● Each thread gets its own copy or errno!

11

COMP1521 25T1

Using POSIX Threads (pthreads)
● POSIX Threads is a widely-supported threading model
● Provides an API/model for managing threads (and synchronisation)

#include <pthread.h>

● Sometimes need -pthread when compiling
● C11 and later also provides a model/API similar to pthreads

○ Has some small differences with pthreads, and generally
less-supported and less used (for now…)

12

COMP1521 25T1

Creating threads with pthread_create
int pthread_create(pthread_t *restrict thread,
 const pthread_attr_t *restrict attr,
 void *(*start_routine)(void *),
 void *restrict arg);

● Starts a new thread running start_routine(arg)
● An ID for the thread is stored in thread
● Thread has attributes specified in attr (NULL if you don’t want

special attributes)
● Returns 0 if OK, otherwise an error number (does not set errno!)
● Analogous to posix_spawn.

13

COMP1521 25T1

Examples
● one_thread_infinite_loops.c
● one_thread_infinite_loops_my_puts.c
● one_thread.c

14

COMP1521 25T1

Waiting for threads with pthread_join
int pthread_join(pthread_t thread, void **retval);

● Waits for thread to terminate, if it hasn’t already terminated
● Return/exit value of thread placed in *retval
● Analogous to waitpid

● When main returns, all threads terminate

15

COMP1521 25T1

Some examples
● two_threads_broken.c
● two_threads.c
● nthreads.c
● threads_return.c

16

COMP1521 25T1

naive_sum.c
thread_sum.c

Something Useful with Threads!

17

COMP1521 25T1

Example thread_sum

 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12

10 26 42

 thread_1 thread_2 thread_3

18

COMP1521 25T1

A graph of the performance of thread_sum.c

19

COMP1521 25T1

Some other concurrency benefits
● One thread can wait for I/O (block) while others make progress

or wait for separate I/O
● Useful for user interface programming

20

COMP1521 25T1

● When sharing data with a thread we pass in addresses of data
○ What if by the time the thread reads the data, that data no longer

exists?
● So far we have put data in local variables in main

○ Main outlives all of the created threads
● What if we create threads from functions other than main?

● Demo: thread_data_broken.c
● Demo: thread_data_malloc.c

Data Lifetime Issues

21

COMP1521 25T1

Data Races, Deadlock and Disasters

22

COMP1521 25T1

Demo: bank_account_broken.c

Incrementing a global variable is NOT an atomic operation

Unsafe Access to Global Variables

23

COMP1521 25T1

If bank_account = 42 and two threads execute concurrently

Global Variables and Race Condition

24

Oops! We lost an increment.
Threads share global variables!

COMP1521 25T1

If bank_account = 100 and two threads execute concurrently

Global Variables and Race Condition

25

● This is a critical section.
● We don’t want two threads in the critical section

○ We must establish mutual exclusion.

COMP1521 25T1

A solution: mutexes
● We need a way of guaranteeing mutual exclusion for certain

shared resources (such as bank_account)
● We associate each of those resources with a mutex
● Only one thread can hold a mutex, any other threads which

attempt to lock the mutex must wait until the mutex is unlocked
● So only one thread will be executing the section between the

mutex lock and the mutex unlock

int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);

26

COMP1521 25T1

int bank_account=0;

pthread_mutex_t bank_account_lock=PTHREAD_MUTEX_INITIALIZER;

void *add_100000(void*argument){

for (int i = 0; i < 1000000; i++) {

 pthread_mutex_lock(&bank_account_lock);

 // only one thread can execute this

 // section of code at any time

 bank_account = bank_account + 1;

 pthread_mutex_unlock(&bank_account_lock);

}

bank_account_mutex.c

27

COMP1521 25T1

Mutex the world!
● Mutexes solve all our data race problems!
● So… just put a mutex around everything!
● This works… but then we lose the advantages of parallelism
● Mutexes also have overhead
● Python 🐍 does this

○ Global Interpreter Lock (GIL) (although they’re trying to stop…)
● Linux used to do this (they removed the ‘Big Kernel Lock’ in

2011)

28

https://peps.python.org/pep-0703/

COMP1521 25T1

bank_account_deadlock.c

Code Demo: Deadlock

29

COMP1521 25T1

Deadlocks

lock_B 🔓

lock_A 🔓

THREAD 1
1. acquire lock_A
2. acquire lock_B
3. do_somthing(A, B)
4. release lock_B
5. release lock_A

THREAD 2
1. acquire lock_B
2. acquire lock_A
3. do_somthing(A, B)
4. release lock_A
5. release lock_B

lock_A 🔒 lock_B 🔒

❌ BLOCKED! ❌ BLOCKED!

● No thread can make progress!
● The system is deadlocked

This slide has animations, use
the ‘slideshow’ button to view it.

COMP1521 25T1

Solving deadlocks
● A simple rule to avoid deadlocks:

○ All thread must acquire locks in the same order

○ (also good if locks are released in reverse order, if possible)
● e.g., always acquire lock_A before lock_B

THREAD 1
1. acquire lock_A
2. acquire lock_B
3. do_somthing(A, B)
4. release lock_B
5. release lock_A

THREAD 2
1. acquire lock_A
2. acquire lock_B
3. do_somthing(A, B)
4. release lock_B
5. release lock_A

31

COMP1521 25T1

Atomics
● With hardware support, we can avoid data races without

needing to use locks!
● In C, we can use ‘atomic types’, which guarantee that certain

operations using them will be performed atomically (indivisibly)
⇒ no data race!

● Also avoids overhead of mutexes
● And since no locks are involved, we can’t introduce deadlock
● Atomics don’t solve all concurrency problems
● There are still some subtle problems (which we don’t cover in

COMP1521)
● 32

COMP1521 25T1

Atomics
● Declaring an atomic variable

○ atomic_int x = 10;

○ x += 1; // Will be done atomically

○ x = x + 1; //Will NOT be done atomically!!!!

● A subset of functions in stdatomic.h:
○ atomic_fetch_add

■ atomic_int x = 10;

■ int old = atomic_fetch_add(&x, 1);

○ atomic_fetch_sub
○ atomic_fetch_or, atomic_fetch_xor, atomic_fetch_and

33

COMP1521 25T1

atomic_int bank_account = 0;

void *add_100000(void *argument) {

 for (int i = 0; i < 100000; i++) {

 // NOTE: This *cannot* be `bank_account = bank_account + 1`,

 // as that will not be atomic!

 // However, `bank_account++` would be okay

 // `atomic_fetch_add(&bank_account, 1)` would also be okay

 bank_account += 1;

 }

Add code with atomic in it

34

COMP1521 25T1

Concurrency is really complex!
● This is just a taste of concurrency!
● Other fun concurrency problems/concepts: livelock, starvation,

thundering herd, memory ordering, semaphores, software
transactional memory, user threads, fibers, etc.

● A number of courses at UNSW offer more:
○ COMP3231/COMP3891: [Extended] operating systems

○ COMP3151: Foundations of Concurrency

○ COMP6991: Solving Modern Programming Problems with Rust

○ … and more!
35

COMP1521 25T1

● Concurrency
● Threads
● Data lifetime issues, Data races, deadlocks
● Mutexes, atomics

What we learnt Today

COMP1521 25T1

● Pre-recorded:
○ Finish concurrency and threads if needed
○ Revision coding examples

■ Files, directories
■ Processes

Next Lecture

COMP1511/COMP1911

Feedback Please!
Your feedback is valuable!

If you have any feedback from
today's lecture, please follow the
link below or use the QR Code.

Please remember to keep your
feedback constructive, so I can
action it and improve your
learning experience.

38

https://forms.office.com/r/z2D9Rsm9yH

COMP1521 25T1 39

Content Related Questions:
Forum

Admin related Questions email:
cs1521@cse.unsw.edu.au

Reach Out

https://discourse01.cse.unsw.edu.au/25T1/COMP1521/
mailto:cs1521@cse.unsw.edu.au

COMP1521 25T1

Student Support | I Need Help With…

40

— student.unsw.edu.au/advisorsStudent Support
Indigenous Student
Support

Equity Diversity and Inclusion
(EDI)

— edi.unsw.edu.au/sexual-misconduct

Equitable Learning Service
(ELS)

— student.unsw.edu.au/els

Academic Language
Skills

— student.unsw.edu.au/skills

Special Consideration — student.unsw.edu.au/special-consideration

My Feelings and Mental
Health

Managing Low Mood, Unusual Feelings & Depression

Mental Health
Connect

Mind
HUB

student.unsw.edu.au/counselling
Telehealth

student.unsw.edu.au/mind-hub
Online Self-Help Resources

1300 787 026
5pm-9am

In Australia Call Afterhours
UNSW Mental Health Support
Line

Outside Australia
Afterhours 24-hour
Medibank Hotline

+61 (2) 8905 0307

Uni and Life Pressures
Stress, Financial, Visas, Accommodation & More

Reporting Sexual Assault/Harassment

Educational Adjustments
To Manage my Studies and Disability / Health Condition

Academic and Study Skills

Special Consideration
Because Life Impacts our Studies and Exams

