
COMP1521 25T1

COMP1521 25T1

Processes and Pipes

Week 9 Lecture 1

Adapted from Abiram Nadarajah, Hammond Pearce,
Andrew Taylor and John Shepherd’s slides

COMP1521 25T1

● Public Holiday Week 9 Friday and Week 10 Monday and Friday
○ Please attend a catch up class

Week 9 and Week 10 Public Holiday Catch Up Classes - Announcements - COMP1521

● Pre-recorded video to make up for Monday Week 10 lecture
● Week 10: In person labs Practice Exams:

○ Questions are not released you need to attend
○ Not worth marks
○ Regular lab questions for marks to do too

Announcements

https://discourse01.cse.unsw.edu.au/25T1/COMP1521/t/week-9-and-week-10-public-holiday-catch-up-classes/471

COMP1521 25T1

● Past Exams: Released before tuesday week 10, solutions
released tuesday week 11

● Assignment 2 walkthrough videos are up.
○ Questions about sf

Announcements

COMP1521 25T1

Today’s Lecture
● Processes

○ Recap, Execve recap
○ Fork
○ Wait
○ posix_spawn

● Inter Process
Communication

○ Pipes

4

When a Linux Process
stops responding

COMP1521 25T1

● A process is an instance of an executing program.
● Each process has an execution state, defined by…

○ current values of CPU registers
○ current contents of its memory
○ information about open files (and other results of system calls)

● each process has a unique process ID, or PID: a positive integer,
type pid_t, defined in <unistd.h>

● Each process has a parent process
● A process may have child processes

Recap: Processes

5

COMP1521 25T1

$ dcc exec.c
$ a.out
good-bye cruel world
$

Recap: Example: using exec()

6

int main(void) {

 char *echo_argv[] = {"/bin/echo","good-bye","cruel","world",NULL};

 execv("/bin/echo", echo_argv);

 // if we get here there has been an error

 perror("execv");

Demo: exec.c

COMP1521 25T1

● Creates new process by duplicating the calling process.
○ new process is the child, calling process is the parent

● Both child and parent return from fork() call… how to distinguish?
○ in the child, fork() returns 0
○ in the parent, fork() returns the pid of the child
○ if the system call failed, fork() returns -1

● Child inherits copies of parent’s address space, open files …

fork() — clone yourself

7

#include <sys/types.h>

#include <unistd.h>

pid_t fork(void);

COMP1521 25T1

Example: using fork()

8

// fork creates 2 identical copies of program

// only return value is different

pid_t pid = fork();

if (pid == -1) {

perror("fork"); // print why the fork failed

} else if (pid == 0) {

printf("I am the child because fork() returned %d.\n", pid);

} else {

printf("I am the parent because fork() returned %d.\n", pid);

}

Demo: fork.c, fork2.c

COMP1521 25T1

fork_gotcha.c

int main(void) {

 printf("about to fork getpid() = %d...\n", getpid());

 pid_t fork_return = fork();

printf("fork() = %d, getpid() = %d...\n",fork_return,

getpid());

 return 0;

}

Demo: fork_gotcha.c

COMP1521 25T1

How many processes are created when we run this program? What
will it print?

Exercise: How many processes?

10

Demo: fork_ex1.c

int main(void) {

 printf("Hello\n");

fork();

 fork();

 fork();

 printf("Goodbye\n");

 return 0;

}

COMP1521 25T1

Fork dangers, e.g. a fork bomb

11

#include <stdio.h>

#include <unistd.h>

// DO NOT RUN THIS!!!!!

int main(void) {

for(int i = 0; i < 10; i++) {

 printf("In %d fork returned %d\n", getpid(), fork());

 sleep(1);

 }

 return 0;

}

COMP1521 25T1

● status is set to hold info about pid.
○ e.g., exit status if pid terminated
○ macros allow precise determination of state change

■ (e.g. WIFEXITED(status), WCOREDUMP(status))
● options provide variations in waitpid() behaviour

○ default: wait for child process to terminate
○ WNOHANG: return immediately if no child has exited
○ WCONTINUED: return if a stopped child has been restarted

● For more information, man 2 waitpid.

waitpid() — wait for process to change state

12

pid_t waitpid(pid_t pid, int *wstatus, int options)

COMP1521 25T1

Fork and Exec Together!

13

COMP1521 25T1

Example: fork() and exec() to run /bin/date

14

pid_t pid = fork();

if (pid == -1) {

 perror("fork"); // print why fork failed

} else if (pid == 0) { // child

 char *date_argv[] = {"/bin/date", "--utc", NULL};

 execv("/bin/date", date_argv);

 perror("execv"); // print why exec failed

} else { // parent

 int exit_status;

 if (waitpid(pid, &exit_status, 0) == -1) {

 perror("waitpid");

 exit(1);

 }

 printf("/bin/date exit status was %d\n", exit_status);

}

Demo: fork_exec.c,
fork_exec2.c

COMP1521 25T1

● Creates another process
○ runs command via /bin/sh.
○ waits for command to finish and returns exit status

● Don’t use in code which handles untrusted input or needs to be
reliable!
○ Only use for quick debugging and throwaway code

system(): convenient but unsafe

15

#include <stdlib.h>

int system(const char *command)

COMP1521 25T1

● Convenient … but extremely dangerous —
○ very brittle; highly vulnerable to security exploits
○ especially dangerous in code which handles untrusted input!
○ https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=OS+Command+Injection

○ use for quick debugging and throw-away programs only

system() — convenient but risky

16

// run date --utc to print current UTC

int exit_status = system("/bin/date --utc");

printf("/bin/date exit status was %d\n", exit_status);

return 0;

Demo: system.c

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=OS+Command+Injection

COMP1521 25T1

● Old-fashioned way fork() then exec()
○ fork() duplicates the current process (parent+child)
○ exec() “overwrites” the current process (run by child)

● Scary unsafe way system()
● New, standard way posix_spawn()

Making Processes

17

COMP1521 25T1

● pid: returns process id of new program
● path: path to the program to run
● file_actions: specifies file actions to be performed before

running program
○ can be used to redirect stdin, stdout to file or pipe

posix_spawn() — Run a new process

18

#include <spawn.h>

int posix_spawn(

 pid_t *pid, const char *path,

 const posix_spawn_file_actions_t *file_actions,

 const posix_spawnattr_t *attrp,

 char *const argv[], char *const envp[]);

COMP1521 25T1

● attrp: specifies attributes for new process (not covered in COMP1521)
● argv: arguments to pass to new program
● envp: environment to pass to new program
● can also use posix_spawnp which searches PATH

posix_spawn() — Run a new process

19

#include <spawn.h>

int posix_spawn(

 pid_t *pid, const char *path,

 const posix_spawn_file_actions_t *file_actions,

 const posix_spawnattr_t *attrp,

 char *const argv[], char *const envp[]);

COMP1521 25T1

Example: posix_spawn() to run /bin/date

20

pid_t pid;

extern char **environ;

char *date_argv[] = {"/bin/date", "--utc", NULL};

// spawn "/bin/date" as a separate process

int ret = posix_spawn(&pid, "/bin/date", NULL, NULL, date_argv, environ);

if (ret != 0) {

 errno = ret; //posix_spawn returns error code, does not set errno

 perror("spawn"); exit(1);

}

// wait for spawned processes to finish

int exit_status;

if (waitpid(pid, &exit_status, 0) == -1) {

 perror("waitpid"); exit(1);

}

printf("/bin/date exit status was %d\n", exit_status); Demo: posix_spawn.c

COMP1521 25T1

Running ls -ld via posix_spawn()

Example: posix_spawn() versus system()

21

char *ls_argv[2] = {"/bin/ls", "-ld", NULL};

pid_t pid; int ret;

extern char **environ;

if((ret = posix_spawn(&pid, "/bin/ls", NULL,

 NULL, ls_argv, environ)) != 0)

{

 errno = ret; perror("spawn"); exit(1);

}

int exit_status;

if (waitpid(pid, &exit_status, 0) == -1) {

 perror("waitpid"); exit(1);

}

system("ls -ld");

Running ls -ld via system()

Demo: lsld_spawn.c
 lsld_system.c

COMP1521 25T1

Setting environment var for child process

22

// set environment variable STATUS

setenv("STATUS", "great", 1);

char *getenv_argv[] = {"./get_status", NULL};

pid_t pid;

extern char **environ;

int ret = posix_spawn(&pid, "./get_status", NULL, NULL,

getenv_argv, environ);

if (ret != 0) {

 errno = ret; perror("spawn"); return 1;

}

int exit_status;

if (waitpid(pid, &exit_status, 0) == -1) {

 perror("waitpid"); exit(1); Demo: set_status.c

COMP1521 25T1

Change behaviour with an environment var

23

pid_t pid;

char *date_argv[] = { "/bin/date", NULL };

char *date_environment[] = { "TZ=Australia/Perth", NULL };

// print time in Perth

int ret = posix_spawn(&pid, "/bin/date", NULL, NULL, date_argv,

date_environment);

if (ret != 0) {

 errno = ret; perror("spawn"); return 1;

}

int exit_status;

if (waitpid(pid, &exit_status, 0) == -1) {

 perror("waitpid"); return 1;

}

printf("/bin/date exit status was %d\n", exit_status); Demo: spawn_env.c

COMP1521 25T1

Aside: Zombie Processes

24

COMP1521 25T1

● When a process terminates, some of its details remain in the process
table, and the process is called a zombie.

● A zombie remains until its parent calls wait() or waitpid() (reaps the
process)
○ this can be a problem for long running processes that don’t reap

their children.
○ zombies that hang around waste system resources.

● Orphan process = a process whose parent has exited
○ when parent exits, orphan assigned PID 1 (init) as its new parent
○ init always accepts notifications of child terminations

Aside: Zombie Processes

25

COMP1521 25T1

● triggers any functions registered as atexit()
● flushes stdio buffers; closes open FILE *’s
● terminates current process
● a SIGCHLD signal is sent to parent
● returns status to parent (via waitpid())
● any child processes are inherited by init (pid 1)

exit() — terminate yourself

26

#include <stdlib.h>

void exit(int status);

COMP1521 25T1

● terminates current process without triggering functions
registered as atexit()

● stdio buffers not flushed
● sometimes used by children of fork() when exiting

_exit() — terminate yourself without …

27

#include <stdlib.h>

void _exit(int status);

COMP1521 25T1

Inter Process Communication

28

COMP1521 25T1

Send output of one process as input to another

pipe() — stream bytes between processes

29

Process A
WRITES
to the
pipe

Process B
READS

from the
pipe

COMP1521 25T1

Demo: on the command line:
 seq 1 10 | wc

pipe() — stream bytes between processes

30

Process A
WRITES
to the
pipe

Process B
READS

from the
pipe

COMP1521 25T1

● Pipes: unidirectional byte streams provided by operating
system
○ pipefd[0]: set to file descriptor of read end of pipe
○ pipefd[1]: set to file descriptor of write end of pipe
○ bytes written to pipefd[1] will be read from pipefd[0]

● Child processes (by default) inherit file descriptors including
pipes

pipe() — stream bytes between processes

31

#include <unistd.h>

int pipe(int pipefd[2]);

Demo:pipe_fork.c, pipe_fork2.c

COMP1521 25T1

● Parent can send/receive bytes (not both) to child via pipe
○ parent and child should both close unused pipe file descriptors
○ e.g if bytes being written (sent) parent to child

■ parent should close read end pipefd[0]
■ child should close write end pipefd[1]

● Pipe file descriptors can be used with stdio via fdopen()

Closing pipes

32

COMP1521 25T1

● runs command via /bin/sh
● if type is “w” pipe to stdin of command created
● if type is “r” pipe from stdout of command created
● FILE * stream returned - get then use fgetc/fputc etc

○ NULL returned if error
● close stream with pclose (not fclose)

○ pclose waits for command and returns exit status

popen() — convenient way to set up pipe

33

#include <stdio.h>

FILE *popen(const char *command, const char *type);

int pclose(FILE *stream);

COMP1521 25T1

● convenient but brittle
● vulnerable to command injection (same as system())
● try to avoid use except in debugging and throw-away programs

popen() — unsafe

34

#include <stdio.h>

FILE *popen(const char *command, const char *type);

int pclose(FILE *stream);

COMP1521 25T1

Example: process output with popen()

35

// popen passes string to a shell for evaluation

// brittle and highly-vulnerable to security exploits

// popen is suitable for quick debugging and throw-away programs only

FILE *p = popen("/bin/date --utc", "r");

if (p == NULL) {

 perror(""); return 1;

}

char line[256];

if (fgets(line, sizeof line, p) == NULL) {

 fprintf(stderr, "no output from date\n"); return 1;

}

printf("output captured from /bin/date was: '%s'\n", line);

pclose(p); // returns command exit status
Demo: read_popen.c

COMP1521 25T1

Example: input to a process with popen()

36

int main(void) {

 // popen passes command to a shell for evaluation

 // brittle and highly-vulnerable to security exploits

 //

 // tr a-z A-Z - passes stdin to stdout converting lower case to upper case

 FILE *p = popen("tr a-z A-Z", "w");

 if (p == NULL) {

 perror("");

 return 1;

 }

 fprintf(p, "hello, i am a COMP1521 aficionado\n");

 pclose(p); // returns command exit status

 return 0;

}
Demo: write_popen.c

COMP1521 25T1

• functions to combine file ops with posix_spawn process creation
• awkward to understand and use — but robust

posix_spawn and pipes (advanced topic)

37

int posix_spawn_file_actions_destroy(

 posix_spawn_file_actions_t *file_actions);

int posix_spawn_file_actions_init(

 posix_spawn_file_actions_t *file_actions);

int posix_spawn_file_actions_addclose(

 posix_spawn_file_actions_t *file_actions, int fildes);

int posix_spawn_file_actions_adddup2(

 posix_spawn_file_actions_t *file_actions, int fildes, int newfildes);

Example: capturing output from a process: spawn_read_pipe.c
Example: sending input to a process: spawn_write_pipe.c

COMP1521 25T1

● Processes
○ execv, fork, waitpid
○ posix_spawn

● Pipes
○ posix_spawn

(advanced usage)

What we learnt Today

COMP1521 25T1

● Concurrency and Parallelism
○ Threads
○ Mutexes
○ Atomics

Next Lecture

COMP1511/COMP1911

Feedback Please!
Your feedback is valuable!

If you have any feedback from
today's lecture, please follow the
link below or use the QR Code.

Please remember to keep your
feedback constructive, so I can
action it and improve your
learning experience.

40

https://forms.office.com/r/F5Nh1svm2e

COMP1521 25T1 41

Content Related Questions:
Forum

Admin related Questions email:
cs1521@cse.unsw.edu.au

Reach Out

https://discourse01.cse.unsw.edu.au/25T1/COMP1521/
mailto:cs1521@cse.unsw.edu.au

COMP1521 25T1

Student Support | I Need Help With…

42

— student.unsw.edu.au/advisorsStudent Support
Indigenous Student
Support

Equity Diversity and Inclusion
(EDI)

— edi.unsw.edu.au/sexual-misconduct

Equitable Learning Service
(ELS)

— student.unsw.edu.au/els

Academic Language
Skills

— student.unsw.edu.au/skills

Special Consideration — student.unsw.edu.au/special-consideration

My Feelings and Mental
Health

Managing Low Mood, Unusual Feelings & Depression

Mental Health
Connect

Mind
HUB

student.unsw.edu.au/counselling
Telehealth

student.unsw.edu.au/mind-hub
Online Self-Help Resources

1300 787 026
5pm-9am

In Australia Call Afterhours
UNSW Mental Health Support
Line

Outside Australia
Afterhours 24-hour
Medibank Hotline

+61 (2) 8905 0307

Uni and Life Pressures
Stress, Financial, Visas, Accommodation & More

Reporting Sexual Assault/Harassment

Educational Adjustments
To Manage my Studies and Disability / Health Condition

Academic and Study Skills

Special Consideration
Because Life Impacts our Studies and Exams

