
COMP1521 25T2

COMP1521 25T2

Concurrency, Parallelism and Threads

Week 9 Lecture 2

Adapted from Angela Finlayson, Xavier Cooney,
Andrew Taylor and John Shepherd’s slides

1

COMP1521 25T2

Assignment 1: subjective marking complete and available.

Assignment 2: Get started ASAP if you have not already.

● Help sessions and forums will be very BUSY soon…

● You still have a chance to get help in tut/labs now too!

Weekly test 8 due tomorrow

Announcements

2

COMP1521 25T2

Today’s Lecture

● Concurrency

● Threads

● Mutexes

● Atomics

3

COMP1521 25T2

Concurrency & Parallelism

Concurrency: Multiple computations with overlapping time

periods. Does not have to be simultaneous.

Computation A

Computation B

Computation A

Computation B

Parallelism: Multiple computations executing simultaneously.

4

COMP1521 25T2

Have we already seen concurrency in this course?

What about parallelism?

Question

5

COMP1521 25T2 6

COMP1521 25T2

Flynn’s Taxonomy for Classifying Parallelism

SISD: Single Instruction, Single Data (“no parallelism”)

● e.g. mipsy

SIMD: Single Instruction, Multiple Data (“vector processing”)

● Multiple cores of a CPU executing (parts of) same instruction

● e.g. GPUs (graphics rendering and training and running neural

networks e.g. LLMs)

MISD: Multiple Instruction, Single Data

● e.g., fault tolerance in space shuttles (task replication)

MIMD: Multiple Instruction, Multiple Data (“multiprocessing”)

● Multiple cores of a CPU executing different instructions

7

COMP1521 25T2

Distributed Parallel Computing

● Distributing computation across multiple computers

○ One popular framework is MapReduce

○ Necessary for very big computations and very large sets of data

○ Can be difficult to deal with synchronisation and failure of
machines (or networks)

○ Out of scope for COMP1521

8

https://en.wikipedia.org/wiki/MapReduce

COMP1521 25T2

Parallelism with processes

● Create multiple processes, and split the job across them

● Each process

○ runs concurrently

○ has its own address space (giving isolation)

● Processes can be distributed across cores, giving parallelism

● But this strategy is expensive!

○ Creation/teardown expensive

○ Switching expensive

○ Lots of state per process

⇒ costs memory

○ Communication can be

complicated and expensive
9

COMP1521 25T2

Threads: parallelism within a process

● Threads allows us to create concurrency within a process

● Threads within a process share the address space:

○ Threads share code

○ Threads share global variables

○ Threads share the heap (malloc)

● Some other process state is shared

○ environment variables, file descriptors, current working directory, …

10

COMP1521 25T2

Threads: parallelism within a process

● Each thread has a separate execution state

○ Often called the Thread Control Block (TCB)

○ Includes CPU register values (including the program counter)

● Each thread has it's own stack

○ But a thread can still read/write to another thread’s stack

● Each thread gets its own copy of errno!

11

COMP1521 25T2

Using POSIX Threads (pthreads)

● POSIX Threads is a widely-supported threading model

● Provides an API/model for managing threads (and synchronisation)

#include <pthread.h>

● Sometimes need -pthread when compiling

● C11 and later also adopted a pthreads-like model

○ Has some small differences with pthreads, and generally less-

supported and less used (for now…)

12

COMP1521 25T2

Creating threads with pthread_create

int pthread_create(pthread_t *restrict thread,
const pthread_attr_t *restrict attr,
void *(*start_routine)(void *),
void *restrict arg);

● Starts a new thread running start_routine(arg)
● Information about the new thread stored in thread

● Thread has attributes specified in attr (NULL if you don’t want

special attributes)

● Returns 0 if OK, otherwise an error number (does not set errno!)

● Analogous to posix_spawn.

13

COMP1521 25T2

Waiting for threads with pthread_join

int pthread_join(pthread_t thread, void **retval);

● Waits for thread to terminate, if it hasn’t already terminated

● Return/exit value of thread placed in *retval

● Analogous to waitpid

● When main returns, all threads terminate

14

COMP1521 25T2

Some examples

● two_threads_broken.c

● two_threads.c

● n_threads.c

15

COMP1521 25T2

thread_sum.c

Something Useful with Threads!

16

COMP1521 25T2

Example thread_sum

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12

10 26 42

thread_1 thread_2 thread_3

17

COMP1521 25T2

A graph of the performance of thread_sum.c

18

COMP1521 25T2

Some other concurrency benefits

● One thread can wait for I/O (block) while others make progress

or wait for other I/O

● Useful for user interface programming

19

COMP1521 25T2

● When sharing data with a thread we pass in addresses of data

○ What if by the time the thread reads the data, that data no longer

exists?

● So far we have put data in local variables in main

○ Main outlives all of the created threads

● What if we create threads from functions other than main?

● Demo: thread_data_broken.c

● Demo: thread_data_malloc.c

Data Lifetime Issues

20

COMP1521 25T2

Data Races, Deadlock and Disasters

21

COMP1521 25T2

Demo: bank_account_broken.c

Incrementing a global variable is NOT an atomic operation

Unsafe Access to Global Variables

22

COMP1521 25T2

If bank_account = 42 and two threads execute concurrently

Global Variables and Race Condition

23

Oops! We lost an increment.
Threads share global variables!

COMP1521 25T2

If bank_account = 100 and two threads execute concurrently

Global Variables and Race Condition

24

● This is a critical section.
● We don’t want two threads in the critical section

○ We must establish mutual exclusion.

COMP1521 25T2

A solution: mutexes

● We need a way of guaranteeing mutual exclusion for certain

shared resources (such as bank_account)

● We associate each of those resources with a mutex

● Only one thread can hold a mutex, any other threads which

attempt to lock the mutex must wait until the mutex is unlocked

● So only one thread will be executing the section between the

mutex lock and the mutex unlock

int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);

25

COMP1521 25T2

int bank_account=0;

pthread_mutex_t bank_account_lock=PTHREAD_MUTEX_INITIALIZER;

void *add_100000(void*argument){

for (int i = 0; i < 1000000; i++) {

pthread_mutex_lock(&bank_account_lock);

// only one thread can execute this

// section of code at any time

bank_account = bank_account + 1;

pthread_mutex_unlock(&bank_account_lock);

}

bank_account_mutex.c

26

COMP1521 25T2

Mutex the world!

● Mutexes solve all our data race problems!

● So… just put a mutex around everything!

● This works… but then we lose the advantages of parallelism

● Mutexes also have overhead

● Python does this

○ Global Interpreter Lock (GIL) (although they’re trying to stop…)

● Linux used to do this (they removed the ‘Big Kernel Lock’ in

2011)

27

https://peps.python.org/pep-0703/

COMP1521 25T2

bank_account_deadlock.c

Code Demo: Deadlock

28

COMP1521 25T2

Deadlocks

THREAD 1

1. acquire lock_A

2. acquire lock_B

3. do_somthing(A, B)

4. release lock_B

5. release lock_A

THREAD 2

1. acquire lock_B

2. acquire lock_A

3. do_somthing(A, B)

4. release lock_A

5. release lock_B

29

COMP1521 25T2

Deadlocks

lock_B

lock_A

THREAD 1

1. acquire lock_A

2. acquire lock_B

3. do_somthing(A, B)

4. release lock_B

5. release lock_A

THREAD 2

1. acquire lock_B

2. acquire lock_A

3. do_somthing(A, B)

4. release lock_A

5. release lock_B

lock_A lock_B

BLOCKED! BLOCKED!

● No thread can make progress!

● The system is deadlocked

This slide has animations, use

the ‘slideshow’ button to view it.

30

COMP1521 25T2

Solving deadlocks

● A simple rule to avoid deadlocks:

○ All thread must acquire locks in the same order

○ (also good if locks are released in reverse order, if possible)

● e.g., always acquire lock_A before lock_B

THREAD 1

1. acquire lock_A

2. acquire lock_B

3. do_somthing(A, B)

4. release lock_B

5. release lock_A

THREAD 2

1. acquire lock_A

2. acquire lock_B

3. do_somthing(A, B)

4. release lock_B

5. release lock_A

31

COMP1521 25T2

Atomics

● With hardware support, we can avoid data races without

needing to use locks!

● In C, we can use ‘atomic types’, which guarantee that certain

operations using them will be performed atomically (indivisibly)

⇒ no data race!

● Also avoids overhead of mutexes

● And since no locks are involved, we can’t introduce deadlock

● Atomics don’t solve all concurrency problems

● There are still some subtle problems (which we don’t cover in

COMP1521)

32

COMP1521 25T2

Atomics

● Declaring an atomic variable

○ atomic_int x = 10;

○ x += 1; // Will be done atomically

○ x = x + 1; //Will NOT be done atomically!!!!

● A subset of functions in stdatomic.h:

○ atomic_fetch_add

■ atomic_int x = 10;

■ int old = atomic_fetch_add(&x, 1);

○ atomic_fetch_sub

○ atomic_fetch_or, atomic_fetch_xor, atomic_fetch_and
33

COMP1521 25T2

atomic_int bank_account = 0;

void *add_100000(void *argument) {

for (int i = 0; i < 100000; i++) {

// NOTE: This *cannot* be `bank_account = bank_account + 1`,

// as that will not be atomic!

// However, `bank_account++` would be okay

// `atomic_fetch_add(&bank_account, 1)` would also be okay

bank_account += 1;

}

Add code with atomic in it

34

COMP1521 25T2

Concurrency is really complex!

● This is just a taste of concurrency!

● Other fun concurrency problems/concepts: livelock, starvation,

thundering herd, memory ordering, semaphores, software

transactional memory, user threads, fibers, etc.

● A number of courses at UNSW offer more:

○ COMP3231/COMP3891: [Extended] operating systems

○ COMP3151: Foundations of Concurrency

○ COMP6991: Solving Modern Programming Problems with Rust

○ … and more!
35

COMP1521 25T2

● Concurrency

● Threads

● Data lifetime issues, Data races, deadlocks

● Mutexes, atomics

What we learnt Today

36

COMP1521 25T2

● Virtual Memory

● Revision

Next Lecture

37

COMP1521 25T2 38

Content Related Questions:

Forum

Admin related Questions email:

cs1521@cse.unsw.edu.au

Reach Out

https://discourse02.cse.unsw.edu.au/25T2/COMP1521/
mailto:cs1521@cse.unsw.edu.au

COMP1521 25T2

Student Support | I Need Help With…

39

— student.unsw.edu.au/advisorsStudent Support
Indigenous Student

Support

Equity Diversity and Inclusion

(EDI)

— edi.unsw.edu.au/sexual-misconduct

Equitable Learning Service

(ELS)

— student.unsw.edu.au/els

Academic Language

Skills

— student.unsw.edu.au/skills

Special Consideration — student.unsw.edu.au/special-consideration

My Feelings and Mental

Health

Managing Low Mood, Unusual Feelings & Depression

Mental Health

Connect

Mind

HUB

student.unsw.edu.au/counselling

Telehealth

student.unsw.edu.au/mind-hub

Online Self-Help Resources

1300 787 026

5pm-9am

In Australia Call Afterhours

UNSW Mental Health Support

Line

Outside Australia

Afterhours 24-hour

Medibank Hotline

+61 (2) 8905 0307

Uni and Life Pressures

Stress, Financial, Visas, Accommodation & More

Reporting Sexual Assault/Harassment

Educational Adjustments

To Manage my Studies and Disability / Health Condition

Academic and Study Skills

Special Consideration

Because Life Impacts our Studies and Exams

	Slide 1: COMP1521 25T2
	Slide 2: Announcements
	Slide 3: Today’s Lecture
	Slide 4: Concurrency & Parallelism
	Slide 5: Question
	Slide 6
	Slide 7: Flynn’s Taxonomy for Classifying Parallelism
	Slide 8: Distributed Parallel Computing
	Slide 9: Parallelism with processes
	Slide 10: Threads: parallelism within a process
	Slide 11: Threads: parallelism within a process
	Slide 12: Using POSIX Threads (pthreads)
	Slide 13: Creating threads with pthread_create
	Slide 14: Waiting for threads with pthread_join
	Slide 15: Some examples
	Slide 16: Something Useful with Threads!
	Slide 17: Example thread_sum
	Slide 18: A graph of the performance of thread_sum.c
	Slide 19: Some other concurrency benefits
	Slide 20: Data Lifetime Issues
	Slide 21: Data Races, Deadlock and Disasters
	Slide 22: Unsafe Access to Global Variables
	Slide 23: Global Variables and Race Condition
	Slide 24: Global Variables and Race Condition
	Slide 25: A solution: mutexes
	Slide 26: bank_account_mutex.c
	Slide 27: Mutex the world!
	Slide 28: Code Demo: Deadlock
	Slide 29: Deadlocks
	Slide 30: Deadlocks
	Slide 31: Solving deadlocks
	Slide 32: Atomics
	Slide 33: Atomics
	Slide 34: Add code with atomic in it
	Slide 35: Concurrency is really complex!
	Slide 36: What we learnt Today
	Slide 37: Next Lecture
	Slide 38: Reach Out
	Slide 39: Student Support | I Need Help With…

