
COMP1521 25T2

COMP1521 25T2

Processes and Pipes

Week 9 Lecture 1

Adapted from Angela Finlayson, Abiram Nadarajah,
Hammond Pearce,

Andrew Taylor and John Shepherd’s slides

1

COMP1521 25T2

Today’s Lecture

● Processes

○ Recap: setenv, getenv

○ Recap: execve, fork, waitpid

○ system(...)

○ posix_spawn(...)

● Inter Process Communication

○ Pipes!

2

When a Linux Process
stops responding

COMP1521 25T2

● When run, a program is passed a set of environment variables:

○ Array of strings of the form name=value, terminated with NULL.

Recap: Environment variables

3

// Access via environ variable

extern char **environ;

for (int i = 0; environ[i] != NULL; i++)

printf("%s\n", environ[i]);

// Access via a third argument to main (sometimes)

int main(int argc, char *argv[], char *env[])

// Preferred method is to use getenv/setenv

char *getenv(const char *name);

int setenv(const char *name, const char *value, int overwrite);

COMP1521 25T2

● A process is an instance of an executing program.

● Each process has an execution state, defined by…

○ Current values of CPU registers

○ Current contents of its memory

○ Information about open files (and other results of system calls)

● Each process has a unique process ID, or PID: a positive

integer, type pid_t, defined in <unistd.h>.

getpid() to get PID; getppid() to get parent PID

● Each process has a parent process

● A process may have child processes

Recap: Processes

4

COMP1521 25T2

Recap: processes in C

5

int execv(const char *file, char *const argv[]);

int execvp(const char *file, char *const argv[]);

● exec() family

○ Run another program in place of the current process

○ Most of the current process is re-initialized:

■ e.g. new address space is created - all variables lost

○ Open file descriptors survive (e.g. stdin/stdout unchanged)

○ PID unchanged

● fork() -- clone yourself
pid_t fork(void);

COMP1521 25T2

● wstatus is set to hold info about pid.

○ e.g., exit status if pid terminated

○ macros allow precise determination of state change

■ (e.g. WIFEXITED(wstatus), WCOREDUMP(wstatus))

● options provide variations in waitpid() behaviour

○ default: wait for child process to terminate

○ WNOHANG: return immediately if no child has exited

○ WCONTINUED: return if a stopped child has been restarted

● For more information, man 2 waitpid.

Recap: waitpid()

6

pid_t waitpid(pid_t pid, int *wstatus, int options)

COMP1521 25T2

Recap: fork() and exec() to run /bin/date

7

pid_t pid = fork();

if (pid == -1) {

perror("fork"); // print why fork failed

} else if (pid == 0) { // child

char *date_argv[] = {"/bin/date", "--utc", NULL};

execv("/bin/date", date_argv);

perror("execvpe"); // print why exec failed

} else { // parent

int exit_status;

if (waitpid(pid, &exit_status, 0) == -1) {

perror("waitpid");

exit(1);

}

printf("/bin/date exit status was %d\n", exit_status);

}
Demo: fork_exec.c

COMP1521 25T2

Creates another process and runs command via /bin/sh.

Waits for command to finish and returns exit status

system(): convenient but unsafe

8

#include <stdlib.h>

int system(const char *command)

// run date --utc to print current UTC

int exit_status = system("/bin/date --utc");

printf("/bin/date exit status was %d\n", exit_status);

return 0;

COMP1521 25T2

● Convenient … but extremely dangerous —

○ very brittle; highly vulnerable to security exploits
○ https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=OS+Command+Injection

○ use for quick debugging and throw-away programs only

system(): convenient but unsafe

9

Demo: system.c

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=OS+Command+Injection
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=OS+Command+Injection
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=OS+Command+Injection
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=OS+Command+Injection

COMP1521 25T2

● Old-fashioned way fork() then exec()

○ fork() duplicates the current process (parent+child)

○ exec() “overwrites” the current process (run by child)

● New, standard way posix_spawn()

Making Processes

10

COMP1521 25T2

● pid: returns process id of new program

● path: path to the program to run

● file_actions: specifies file actions to be performed before

running the program

○ can be used to redirect stdin, stdout to file or pipe

posix_spawn() — Run a new process

11

#include <spawn.h>

int posix_spawn(

pid_t *pid, const char *path,

const posix_spawn_file_actions_t *file_actions,

const posix_spawnattr_t *attrp,

char *const argv[], char *const envp[]);

COMP1521 25T2

● attrp: specifies attributes for new process (not covered in

COMP1521)

● argv: arguments to pass to new program

● envp: environment to pass to new program

● can also use posix_spawnp which searches PATH

posix_spawn() — Run a new process

12

#include <spawn.h>

int posix_spawn(

pid_t *pid, const char *path,

const posix_spawn_file_actions_t *file_actions,

const posix_spawnattr_t *attrp,

char *const argv[], char *const envp[]);

COMP1521 25T2

Example: posix_spawn() to run /bin/date

13

pid_t pid;

extern char **environ;

char *date_argv[] = {"/bin/date", "--utc", NULL};

// spawn "/bin/date" as a separate process

int ret = posix_spawn(&pid, "/bin/date", NULL, NULL, date_argv, environ);

if (ret != 0) {

errno = ret; //posix_spawn returns error code, does not set errno

perror("spawn"); exit(1);

}

// wait for spawned processes to finish

int exit_status;

if (waitpid(pid, &exit_status, 0) == -1) {

perror("waitpid"); exit(1);

}

printf("/bin/date exit status was %d\n", exit_status);
Demo: spawn.c

COMP1521 25T2

Running ls -ld via posix_spawn()

Example: posix_spawn() versus system()

14

char *ls_argv[2] = {"/bin/ls", "-ld", NULL};

pid_t pid; int ret;

extern char **environ;

if((ret = posix_spawn(&pid, "/bin/ls", NULL,

NULL, ls_argv, environ)) != 0)

{

errno = ret; perror("spawn"); exit(1);

}

int exit_status;

if (waitpid(pid, &exit_status, 0) == -1) {

perror("waitpid"); exit(1);

}

system("ls -ld");

Running ls -ld via system()

Demo: lsld_spawn.c
lsld_system.c

COMP1521 25T2

Setting environment var for child process

15

// set environment variable STATUS

setenv("STATUS", "great", 1);

char *getenv_argv[] = {"./get_status", NULL};

pid_t pid;

extern char **environ;

int ret = posix_spawn(&pid, "./get_status", NULL, NULL,

getenv_argv, environ);

if (ret != 0) {

errno = ret; perror("spawn"); return 1;

}

int exit_status;

if (waitpid(pid, &exit_status, 0) == -1) {

perror("waitpid"); exit(1); Demo

COMP1521 25T2

Change behaviour with an environment var

16

pid_t pid;

char *date_argv[] = { "/bin/date", NULL };

char *date_environment[] = { "TZ=Australia/Perth", NULL };

// print time in Perth

int ret = posix_spawn(&pid, "/bin/date", NULL, NULL, date_argv,

date_environment);

if (ret != 0) {

errno = ret; perror("spawn"); return 1;

}

int exit_status;

if (waitpid(pid, &exit_status, 0) == -1) {

perror("waitpid"); return 1;

}

printf("/bin/date exit status was %d\n", exit_status);
Demo: spawn_environment.c

COMP1521 25T2

● Triggers any functions registered as atexit()

● Flushes stdio buffers; closes open FILE *’s

● Terminates current process

● SIGCHLD signal is sent to parent

● Returns status to parent (via waitpid())

● Any child processes are inherited by init (pid 1)

exit() — terminate yourself

17

#include <stdlib.h>

void exit(int status);

COMP1521 25T2

● terminates current process without triggering functions

registered as atexit()

● stdio buffers not flushed

● sometimes used by children of fork() when exiting

_exit() — terminate yourself without …

18

#include <stdlib.h>

void _exit(int status);

COMP1521 25T2

Aside: Zombie Processes

19

COMP1521 25T2

● When a process terminates, some of its details remain in the process

table, and the process is called a zombie.

● A zombie remains until its parent calls wait() or waitpid() (reaps the

process)

○ This can be a problem for long running processes that don’t reap

their children.

○ zombies that hang around waste system resources.

● Orphan process = a process whose parent has exited

○ when parent exits, orphan assigned PID 1 (init) as its new parent

○ init always accepts notifications of child terminations

Aside: Zombie Processes

20

COMP1521 25T2

Inter Process Communication

21

COMP1521 25T2

Send output of one process as input to another

pipe() — stream bytes between processes

22

Process A
WRITES
to the
pipe

Process B
READS

from the
pipe

COMP1521 25T2

Demo: on the command line: seq 1 10 | wc

pipe() — stream bytes between processes

23

Process A
WRITES
to the
pipe

Process B
READS

from the
pipe

COMP1521 25T2

● Pipes: unidirectional byte streams provided by operating

system

○ pipefd[0]: set to file descriptor of read end of pipe

○ pipefd[1]: set to file descriptor of write end of pipe

○ bytes written to pipefd[1] will be read from pipefd[0]

● Child processes (by default) inherit file descriptors including

pipes

pipe() — stream bytes between processes

24

#include <unistd.h>

int pipe(int pipefd[2]);

COMP1521 25T2

● Parent can send/receive bytes (not both) to child via pipe

○ parent and child should both close unused pipe file descriptors

○ e.g if bytes being written (sent) parent to child

■ parent should close read end pipefd[0]

■ child should close write end pipefd[1]

● Pipe file descriptors can be used with stdio via:

FILE *fdopen(int fd, const char *mode);

Closing pipes

25

COMP1521 25T2

● runs command via /bin/sh

● if type is “w” pipe to stdin of command created

● if type is “r” pipe from stdout of command created

● FILE * stream returned - then use fgetc/fputc etc

○ NULL returned if error

● close stream with pclose (not fclose)

○ pclose waits for command and returns exit status

popen() — convenient way to set up pipe

26

#include <stdio.h>

FILE *popen(const char *command, const char *type);

int pclose(FILE *stream);

COMP1521 25T2

● Convenient but brittle

● Vulnerable to command injection (same as system())

● Try to avoid use except in debugging and throw-away programs

popen() — unsafe

27

#include <stdio.h>

FILE *popen(const char *command, const char *type);

int pclose(FILE *stream);

COMP1521 25T2

Example: process output with popen()

28

// popen passes string to a shell for evaluation

// brittle and highly-vulnerable to security exploits

// popen is suitable for quick debugging and throw-away programs only

FILE *p = popen("/bin/date --utc", "r");

if (p == NULL) {

perror(""); return 1;

}

char line[256];

if (fgets(line, sizeof line, p) == NULL) {

fprintf(stderr, "no output from date\n"); return 1;

}

printf("output captured from /bin/date was: '%s'\n", line);

pclose(p); // returns command exit status Demo: read_popen.c

COMP1521 25T2

Example: input to a process with popen()

29

int main(void) {

// popen passes command to a shell for evaluation

// brittle and highly-vulnerable to security exploits

//

// tr a-z A-Z - passes stdin to stdout converting lower case to upper case

FILE *p = popen("tr a-z A-Z", "w");

if (p == NULL) {

perror("");

return 1;

}

fprintf(p, "hello, i am a COMP1521 aficionado\n");

pclose(p); // returns command exit status

return 0;

}
Demo: write_popen.c

COMP1521 25T2

• functions to combine file ops with posix_spawn process creation

• awkward to understand and use — but robust

posix_spawn and pipes (advanced topic)

30

int posix_spawn_file_actions_destroy(

posix_spawn_file_actions_t *file_actions);

int posix_spawn_file_actions_init(

posix_spawn_file_actions_t *file_actions);

int posix_spawn_file_actions_addclose(

posix_spawn_file_actions_t *file_actions, int fildes);

int posix_spawn_file_actions_adddup2(

posix_spawn_file_actions_t *file_actions, int fildes, int newfildes);

Example: capturing output from a process: spawn_read_pipe.c

Example: sending input to a process: spawn_write_pipe.c

COMP1521 25T2

● Processes

○ posix_spawn

● Pipes

○ posix_spawn

(advanced usage)

What we learnt Today

31

COMP1521 25T2

● Concurrency and Parallelism

○ Threads

○ Mutexes

○ Atomics

Next Lecture

32

COMP1521 25T2 33

Content Related Questions:

Forum

Admin related Questions email:

cs1521@cse.unsw.edu.au

Reach Out

https://discourse02.cse.unsw.edu.au/25T2/COMP1521/
mailto:cs1521@cse.unsw.edu.au

COMP1521 25T2

Student Support | I Need Help With…

34

— student.unsw.edu.au/advisorsStudent Support
Indigenous Student

Support

Equity Diversity and Inclusion

(EDI)

— edi.unsw.edu.au/sexual-misconduct

Equitable Learning Service

(ELS)

— student.unsw.edu.au/els

Academic Language

Skills

— student.unsw.edu.au/skills

Special Consideration — student.unsw.edu.au/special-consideration

My Feelings and Mental

Health

Managing Low Mood, Unusual Feelings & Depression

Mental Health

Connect

Mind

HUB

student.unsw.edu.au/counselling

Telehealth

student.unsw.edu.au/mind-hub

Online Self-Help Resources

1300 787 026

5pm-9am

In Australia Call Afterhours

UNSW Mental Health Support

Line

Outside Australia

Afterhours 24-hour

Medibank Hotline

+61 (2) 8905 0307

Uni and Life Pressures

Stress, Financial, Visas, Accommodation & More

Reporting Sexual Assault/Harassment

Educational Adjustments

To Manage my Studies and Disability / Health Condition

Academic and Study Skills

Special Consideration

Because Life Impacts our Studies and Exams

	Slide 1: COMP1521 25T2
	Slide 2: Today’s Lecture
	Slide 3: Recap: Environment variables
	Slide 4: Recap: Processes
	Slide 5: Recap: processes in C
	Slide 6: Recap: waitpid()
	Slide 7: Recap: fork() and exec() to run /bin/date
	Slide 8: system(): convenient but unsafe
	Slide 9: system(): convenient but unsafe
	Slide 10: Making Processes
	Slide 11: posix_spawn() — Run a new process
	Slide 12: posix_spawn() — Run a new process
	Slide 13: Example: posix_spawn() to run /bin/date
	Slide 14: Example: posix_spawn() versus system()
	Slide 15: Setting environment var for child process
	Slide 16: Change behaviour with an environment var
	Slide 17: exit() — terminate yourself
	Slide 18: _exit() — terminate yourself without …
	Slide 19: Aside: Zombie Processes
	Slide 20: Aside: Zombie Processes
	Slide 21: Inter Process Communication
	Slide 22: pipe() — stream bytes between processes
	Slide 23: pipe() — stream bytes between processes
	Slide 24: pipe() — stream bytes between processes
	Slide 25: Closing pipes
	Slide 26: popen() — convenient way to set up pipe
	Slide 27: popen() — unsafe
	Slide 28: Example: process output with popen()
	Slide 29: Example: input to a process with popen()
	Slide 30: posix_spawn and pipes (advanced topic)
	Slide 31: What we learnt Today
	Slide 32: Next Lecture
	Slide 33: Reach Out
	Slide 34: Student Support | I Need Help With…

