
COMP1521 25T2

COMP1521 25T2

Processes

Week 8 Lecture 2

Adapted from Angela Finlayson, Abiram Nadarajah,
Hammond Pearce,

Andrew Taylor and John Shepherd’s slides

1

COMP1521 25T2

Today’s Lecture

● Unicode

○ Recap

● Processes

○ What are they?

○ Environment Variables

○ System Calls + Functions

■ execv, fork, wait

■ posix_spawn

2

COMP1521 25T2

● UNICODE is maintained by the Unicode Consortium

● The goal of UNICODE is to create a single encoding that can

represent all of the characters in all of the languages in the

world.

● There are currently 149,878 characters in UNICODE.

● https://en.wikipedia.org/wiki/List_of_Unicode_characters

UNICODE

3

https://en.wikipedia.org/wiki/List_of_Unicode_characters
https://en.wikipedia.org/wiki/List_of_Unicode_characters

COMP1521 25T2

A → U+0041 → 0b00000000000000000000000001000001

€ → U+20AC → 0b00000000000000000010000010101100

字→ U+5B57 → 0b00000000000000000101101101010111

→ U+1F600 → 0b00000000000000011111011000000000

U+XXXX is the representation of a raw UNICODE code point

● code points are always at least 4 hex digits.

● 4 digit code points are on the 0th plane

● The 5th digit (if there is one) is the plane number

UTF-32: Example

4

COMP1521 25T2

● Goal of UTF-8 to increase efficiency

○ Waste less bits!

● Use variable width encoding

○ Why use 4 bytes for every character if we don’t have to?

● Unicode has the most common characters in the first planes

○ These common characters should use less bits!

UTF-8

5

COMP1521 25T2

● A single UTF-8 character can be anywhere from 1 to 4 bytes long

● Exercise: How many UTF-8 encoded characters would this represent

○ 11010111 10101111 11101101 10111100 10001011 01001101

UTF-8 Layout

6

#bytes #bits Byte 1 Byte 2 Byte 3 Byte 4

1 7 0xxxxxxx - - -

2 11 110xxxxx 10xxxxxx - -

3 16 1110xxxx 10xxxxxx 10xxxxxx -

4 21 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

COMP1521 25T2

“Hello 思语” ==
0x00000068

0x00000065

0x0000006c

0x0000006c

0x0000006f

0x00000020

0x0000601D

0x00008BED

8 x 4 = 32 bytes

UTF-32 vs UTF-8

7

“Hello 思语” ==
0x68

0x65

0x6c

0x6c

0x6f

0x20

0xE6809D

0xE8AFAD

12 bytes only

COMP1521 25T2

€ (U+20AC)

● Convert to UTF-32

0x000020AC

0b0000000000000000010000010101100

● Remove leading 0s

0b10000010101100

● Split into 6 bit chunks

0b 10 000010 101100

● Match with appropriate multi-byte encoding

0b 11100010 10000010 10101100

● In hex: 0xE282AC

Conversion to UTF-8 (1/2)

8

COMP1521 25T2

A → U+0041

€ → U+20AC

字 → U+5B57

→ U+1F600

UTF-8: More Examples

9

COMP1521 25T2

● Compact, but not minimal encoding

● ASCII is a subset of UTF-8 - complete backwards compatibility!

● No byte of multi-byte UTF-8 encoding is valid ASCII

● No byte of multi-byte UTF-8 encoding is 0

○ can still use UTF-8 in null-terminated strings.

● 0x2F (ASCII /) and 0x00 can not appear in multi-byte characters

○ hence can use UTF-8 for Linux/Unix filenames

● C programs can treat UTF-8 similarly to ASCII

○ Beware: number of bytes in UTF-8 string != number of characters.

Summary of UTF-8

10

COMP1521 25T2

Processes

11

COMP1521 25T2

● A process is a program running in an environment

● The operating system manages starting, stopping processes

A computer process

12

COMP1521 25T2

Environment for Unix/Linux Processes

13

Process group ID!

Don't confuse with

user group ID.

COMP1521 25T2

● A process is an instance of an executing program.

● Each process has an execution state, defined by…

○ Current CPU register values

○ Current memory content

○ Information about open files (and other results of system calls)

Processes

14

COMP1521 25T2

● Each process has a unique process ID, or PID: a positive

integer, type pid_t, defined in <unistd.h>

● PID 1: init, used to boot the system.

● low-numbered processes usually system-related, started at

boot

○ … but PIDs are recycled, so this isn’t always true

● some parts of the OS may appear to run as processes

○ many Unix-like systems use PID 0 for the operating system

Processes on Unix/Linux

15

COMP1521 25T2

● Each process has a parent process.

○ initially, the process that created it;

○ if a process’ parent terminates, its

parent becomes init (PID 1)

● A process may have child processes

○ These are processes that it created

Parent Processes

16

COMP1521 25T2

● pid_t getpid()

○ Requires #include <sys/types.h>

○ Returns the process ID of the current process

● pid_t getppid()

○ Requires #include <sys/types.h>

○ Returns the parent process ID of the current process

● More details: man 2 getpid

● Not used in this course: getpgid() … get process group ID

syscalls to get info about a process

17

COMP1521 25T2

Minimal example for getpid() and getppid():

18

#include <stdio.h>

#include <unistd.h>

#include <sys/types.h>

int main(void){

printf("My PID is (%d)\n", getpid());

printf("My parent's PID is (%d)\n", getppid());

return 0;

}

COMP1521 25T2

Unix provides a range of tools for manipulating processes

Commands:

● sh … creating processes via object-file name

● ps … showing process information

● w … showing per-user process information

● top … showing high-cpu-usage process information

○ htop

● kill … sending a signal to a process

Unix tools

19

COMP1521 25T2

● Unix-like shells have simple syntax to set environment variables

○ Common to set environment in startup files (e.g .profile)

○ Then passed to any programs they run

○ Almost all programs pass the environment variables they are

given to any programs they run

■ They perhaps add/edit the value of specific environment variables

Environment variables

20

COMP1521 25T2

● Provides simple mechanism to pass settings to all programs

e.g.

○ timezone (TZ)

○ user’s preferred language (LANG)

○ directories to search for programs (PATH)

○ user’s home directory (HOME)

Environment variables

21

COMP1521 25T2

● When run, a program is passed a set of environment variables:

○ Array of strings of the form name=value, terminated with NULL.

○ Access via global variable environ

Environment variables: code

22

// print all environment variables

extern char **environ;

for (int i = 0; environ[i] != NULL; i++) {

printf("%s\n", environ[i]);

}

Demo: environ.c

COMP1521 25T2

Many C implementations also provide as 3rd parameter to main:

Best method: Access using getenv(...) and setenv(...)

Environment variables: better code

23

int main(int argc, char *argv[], char *env[])

COMP1521 25T2

● Reads value from environment variable array by name

● if name is not in the array, returns NULL

getenv() - get an environment variable

24

#include <stdlib.h>

char *getenv(const char *name);

Demo: get_status.c

COMP1521 25T2

● adds name=value to environment variable array

● if name in array, value changed if overwrite is non-zero

Returns 0 if success, or -1 if error (error stored in errno)

setenv() - set an environment variable

25

#include <stdlib.h>

int setenv(const char *name, const char *value, int overwrite);

COMP1521 25T2

● On a typical modern operating system…

○ Multiple processes are active “simultaneously” (multi-tasking)

○ Operating systems provides a virtual machine to each process:

○ Each process executes as if it is the only process running

○ e.g. each process has its own address space

Multi-Tasking

26

Process X

Process Y

COMP1521 25T2

● When there are multiple processes running on the machine,

○ A process uses the CPU, until it is preempted or exits;

○ Then, another process uses the CPU, until it too is preempted.

○ Eventually, the first process will get another run on the CPU.

Multi-Tasking (cont.)

27

COMP1521 25T2

Overall impression: three programs running simultaneously.

(In practice, these time divisions are imperceptibly small!)

Multi-Tasking (cont.) (cont.)

28

COMP1521 25T2

● What can cause a process to be preempted?

○ It ran “long enough”, and the OS replaces it by a waiting process

○ It needs to wait for input, output, or other some other operation

Preemption — When? How?

29

COMP1521 25T2

● The process’s entire state is saved

● The new process’s state is restored

● This change is called a context switch

● Context switches are very expensive!

On preemption…

30

COMP1521 25T2

● The scheduler answers this.

● The operating system’s process scheduling attempts to:

○ Fairly share the CPU(s) among competing processes,

○ Minimize response delays (lagginess) for interactive users,

○ Meet other real-time requirements (e.g. self-driving car),

○ Minimize number of expensive context switches

Which process runs next?

31

COMP1521 25T2

● Creating processes:

○ system(), popen() … create a new process via a shell

■ convenient but major security risk

○ posix_spawn() … create a new process.

○ fork() vfork() … duplicate current process.

■ (actually, “modern” fork() is actually clone()... sshhhhh)

○ exec() family … replace current process.

Process-related Unix/Linux Functions/syscalls

32

COMP1521 25T2

● Destroying processes:

○ exit() … terminate current process, see also

○ _exit() … terminate immediately

■ (atexit functions not called, stdio buffers not flushed)

○ kill() … send signal to a process

● Monitoring changes:

○ waitpid() … wait for state change in child process

Process-related Unix/Linux Functions/syscalls

33

COMP1521 25T2

● Run another program in place of the current process:

○ file: an executable — either a binary, or script starting with #!

○ argv: arguments to pass to new program

○ Most of the current process is re-initialized:

■ e.g. new address space is created - all variables lost

exec() family - replace yourself

34

#include <unistd.h>

int execv(const char *file, char *const argv[]);

int execvp(const char *file, char *const argv[]);

COMP1521 25T2

● open file descriptors survive

○ e.g, stdin & stdout remain the same

○ PID unchanged

○ if successful, exec does not return … where would it return to?

○ on error, returns -1 and sets errno

exec() family - replace yourself

35

#include <unistd.h>

int execv(const char *file, char *const argv[]);

int execvp(const char *file, char *const argv[]);

COMP1521 25T2

$ dcc exec.c

$ a.out

good-bye cruel world

$

Example: using exec()

36

int main(void) {

char *echo_argv[] = {"/bin/echo","good-bye","cruel","world",NULL};

execv("/bin/echo", echo_argv);

// if we get here there has been an error

perror("execv");

Demo: exec.c

COMP1521 25T2

● Creates new process by duplicating the calling process.

○ New process is the child; Calling process is the parent

● Both child and parent return from fork() call… how to distinguish?

○ In the child, fork() returns 0

○ In the parent, fork() returns the pid of the child

○ If the system call failed, fork() returns -1

● Child inherits copies of parent’s address space, open files …

fork() — clone yourself

37

#include <sys/types.h>

#include <unistd.h>

pid_t fork(void);

COMP1521 25T2

Example: using fork()

38

// fork creates 2 identical copies of program

// only return value is different

pid_t pid = fork();

if (pid == -1) {

perror("fork"); // print why the fork failed

} else if (pid == 0) {

printf("I am the child because fork() returned %d.\n", pid);

} else {

printf("I am the parent because fork() returned %d.\n", pid);

}

Demo: fork.c

COMP1521 25T2

Fork and Exec Together!

39

COMP1521 25T2

Fork has some dangers, e.g. a fork bomb

40

#include <stdio.h>

#include <unistd.h>

int main(void) {

// creates 2 ** 10 = 1024 processes

// which all print fork bomb then exit

for (int i = 0; i < 10; i++) {

fork();

}

printf("fork bomb\n");

return 0;

}

COMP1521 25T2

● wstatus is set to hold info about pid.

○ e.g., exit status if pid terminated

○ macros allow precise determination of state change

■ (e.g. WIFEXITED(status), WCOREDUMP(status))

● options provide variations in waitpid() behaviour

○ default: wait for child process to terminate

○ WNOHANG: return immediately if no child has exited

○ WCONTINUED: return if a stopped child has been restarted

● For more information, man 2 waitpid.

waitpid() — wait for process to change state

41

pid_t waitpid(pid_t pid, int *wstatus, int options)

COMP1521 25T2

Example: fork() and exec() to run /bin/date

42

pid_t pid = fork();

if (pid == -1) {

perror("fork"); // print why fork failed

} else if (pid == 0) { // child

char *date_argv[] = {"/bin/date", "--utc", NULL};

execv("/bin/date", date_argv);

perror("execvpe"); // print why exec failed

} else { // parent

int exit_status;

if (waitpid(pid, &exit_status, 0) == -1) {

perror("waitpid");

exit(1);

}

printf("/bin/date exit status was %d\n", exit_status);

}
Demo: fork_exec.c

COMP1521 25T2

Creates another process and

runs command via /bin/sh.

Waits for command to finish and returns exit status

system(): convenient but unsafe

43

#include <stdlib.h>

int system(const char *command)

COMP1521 25T2

● Convenient … but extremely dangerous —

○ very brittle; highly vulnerable to security exploits
○ https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=OS+Command+Injection

○ use for quick debugging and throw-away programs only

system() — convenient but risky

44

// run date --utc to print current UTC

int exit_status = system("/bin/date --utc");

printf("/bin/date exit status was %d\n", exit_status);

return 0;

Demo: system.c

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=OS+Command+Injection
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=OS+Command+Injection
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=OS+Command+Injection
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=OS+Command+Injection

COMP1521 25T2

● Old-fashioned way fork() then exec()

○ fork() duplicates the current process (parent+child)

○ exec() “overwrites” the current process (run by child)

● New, standard way posix_spawn()

Making Processes

45

COMP1521 25T2

● pid: returns process id of new program

● path: path to the program to run

● file_actions: specifies file actions to be performed before

running the program

○ can be used to redirect stdin, stdout to file or pipe

posix_spawn() — Run a new process

46

#include <spawn.h>

int posix_spawn(

pid_t *pid, const char *path,

const posix_spawn_file_actions_t *file_actions,

const posix_spawnattr_t *attrp,

char *const argv[], char *const envp[]);

COMP1521 25T2

● attrp: specifies attributes for new process (not covered in

COMP1521)

● argv: arguments to pass to new program

● envp: environment to pass to new program

● can also use posix_spawnp which searches PATH

posix_spawn() — Run a new process

47

#include <spawn.h>

int posix_spawn(

pid_t *pid, const char *path,

const posix_spawn_file_actions_t *file_actions,

const posix_spawnattr_t *attrp,

char *const argv[], char *const envp[]);

COMP1521 25T2

Example: posix_spawn() to run /bin/date

48

pid_t pid;

extern char **environ;

char *date_argv[] = {"/bin/date", "--utc", NULL};

// spawn "/bin/date" as a separate process

int ret = posix_spawn(&pid, "/bin/date", NULL, NULL, date_argv, environ);

if (ret != 0) {

errno = ret; //posix_spawn returns error code, does not set errno

perror("spawn"); exit(1);

}

// wait for spawned processes to finish

int exit_status;

if (waitpid(pid, &exit_status, 0) == -1) {

perror("waitpid"); exit(1);

}

printf("/bin/date exit status was %d\n", exit_status);
Demo: spawn.c

COMP1521 25T2

Running ls -ld via posix_spawn()

Example: posix_spawn() versus system()

49

char *ls_argv[2] = {"/bin/ls", "-ld", NULL};

pid_t pid; int ret;

extern char **environ;

if((ret = posix_spawn(&pid, "/bin/ls", NULL,

NULL, ls_argv, environ)) != 0)

{

errno = ret; perror("spawn"); exit(1);

}

int exit_status;

if (waitpid(pid, &exit_status, 0) == -1) {

perror("waitpid"); exit(1);

}

system("ls -ld");

Running ls -ld via system()

Demo: lsld_spawn.c
lsld_system.c

COMP1521 25T2

Setting environment var for child process

50

// set environment variable STATUS

setenv("STATUS", "great", 1);

char *getenv_argv[] = {"./get_status", NULL};

pid_t pid;

extern char **environ;

int ret = posix_spawn(&pid, "./get_status", NULL, NULL,

getenv_argv, environ);

if (ret != 0) {

errno = ret; perror("spawn"); return 1;

}

int exit_status;

if (waitpid(pid, &exit_status, 0) == -1) {

perror("waitpid"); exit(1); Demo: [get|set]_status.c

COMP1521 25T2

Change behaviour with an environment var

51

pid_t pid;

char *date_argv[] = { "/bin/date", NULL };

char *date_environment[] = { "TZ=Australia/Perth", NULL };

// print time in Perth

int ret = posix_spawn(&pid, "/bin/date", NULL, NULL, date_argv,

date_environment);

if (ret != 0) {

errno = ret; perror("spawn"); return 1;

}

int exit_status;

if (waitpid(pid, &exit_status, 0) == -1) {

perror("waitpid"); return 1;

}

printf("/bin/date exit status was %d\n", exit_status);
Demo: spawn_environment.c

COMP1521 25T2

● triggers any functions registered as atexit()

● flushes stdio buffers; closes open FILE *’s

● terminates current process

● a SIGCHLD signal is sent to parent

● returns status to parent (via waitpid())

● any child processes are inherited by init (pid 1)

exit() — terminate yourself

52

#include <stdlib.h>

void exit(int status);

COMP1521 25T2

● terminates current process without triggering functions

registered as atexit()

● stdio buffers not flushed

● sometimes used by children of fork() when exiting

_exit() — terminate yourself without …

53

#include <stdlib.h>

void _exit(int status);

COMP1521 25T2

● Recap on UTF-8 Encoding

● Processes

○ Environment Variables

○ system(...), fork(...), execv(...), posix_spawn(...)

○ waitpid(...)

○ exit(...), _exit(...)

What we learnt Today

54

COMP1521 25T2

● Inter Process Communication

○ Pipes!

● Concurrency

● Parallelism

● Threads

Next Lecture

55

COMP1521 25T2 56

Content Related Questions:

Forum

Admin related Questions email:

cs1521@cse.unsw.edu.au

Reach Out

https://discourse02.cse.unsw.edu.au/25T2/COMP1521/
mailto:cs1521@cse.unsw.edu.au

COMP1521 25T2

Student Support | I Need Help With…

57

— student.unsw.edu.au/advisorsStudent Support
Indigenous Student

Support

Equity Diversity and Inclusion

(EDI)

— edi.unsw.edu.au/sexual-misconduct

Equitable Learning Service

(ELS)

— student.unsw.edu.au/els

Academic Language

Skills

— student.unsw.edu.au/skills

Special Consideration — student.unsw.edu.au/special-consideration

My Feelings and Mental

Health

Managing Low Mood, Unusual Feelings & Depression

Mental Health

Connect

Mind

HUB

student.unsw.edu.au/counselling

Telehealth

student.unsw.edu.au/mind-hub

Online Self-Help Resources

1300 787 026

5pm-9am

In Australia Call Afterhours

UNSW Mental Health Support

Line

Outside Australia

Afterhours 24-hour

Medibank Hotline

+61 (2) 8905 0307

Uni and Life Pressures

Stress, Financial, Visas, Accommodation & More

Reporting Sexual Assault/Harassment

Educational Adjustments

To Manage my Studies and Disability / Health Condition

Academic and Study Skills

Special Consideration

Because Life Impacts our Studies and Exams

	Slide 1: COMP1521 25T2
	Slide 2: Today’s Lecture
	Slide 3: UNICODE
	Slide 4: UTF-32: Example
	Slide 5: UTF-8
	Slide 6: UTF-8 Layout
	Slide 7: UTF-32 vs UTF-8
	Slide 8: Conversion to UTF-8 (1/2)
	Slide 9: UTF-8: More Examples
	Slide 10: Summary of UTF-8
	Slide 11: Processes
	Slide 12: A computer process
	Slide 13: Environment for Unix/Linux Processes
	Slide 14: Processes
	Slide 15: Processes on Unix/Linux
	Slide 16: Parent Processes
	Slide 17: syscalls to get info about a process
	Slide 18: Minimal example for getpid() and getppid():
	Slide 19: Unix tools
	Slide 20: Environment variables
	Slide 21: Environment variables
	Slide 22: Environment variables: code
	Slide 23: Environment variables: better code
	Slide 24: getenv() - get an environment variable
	Slide 25: setenv() - set an environment variable
	Slide 26: Multi-Tasking
	Slide 27: Multi-Tasking (cont.)
	Slide 28: Multi-Tasking (cont.) (cont.)
	Slide 29: Preemption — When? How?
	Slide 30: On preemption…
	Slide 31: Which process runs next?
	Slide 32: Process-related Unix/Linux Functions/syscalls
	Slide 33: Process-related Unix/Linux Functions/syscalls
	Slide 34: exec() family - replace yourself
	Slide 35: exec() family - replace yourself
	Slide 36: Example: using exec()
	Slide 37: fork() — clone yourself
	Slide 38: Example: using fork()
	Slide 39: Fork and Exec Together!
	Slide 40: Fork has some dangers, e.g. a fork bomb
	Slide 41: waitpid() — wait for process to change state
	Slide 42: Example: fork() and exec() to run /bin/date
	Slide 43: system(): convenient but unsafe
	Slide 44: system() — convenient but risky
	Slide 45: Making Processes
	Slide 46: posix_spawn() — Run a new process
	Slide 47: posix_spawn() — Run a new process
	Slide 48: Example: posix_spawn() to run /bin/date
	Slide 49: Example: posix_spawn() versus system()
	Slide 50: Setting environment var for child process
	Slide 51: Change behaviour with an environment var
	Slide 52: exit() — terminate yourself
	Slide 53: _exit() — terminate yourself without …
	Slide 54: What we learnt Today
	Slide 55: Next Lecture
	Slide 56: Reach Out
	Slide 57: Student Support | I Need Help With…

