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Today’s Lecture
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● File systems

○ Recap 

○ Useful file system functions

● Representing Text

○ ASCII

○ Unicode

■ UTF8 encoding
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Question 1: Assume I have a opened 2 files for writing and have  FILE * 

f1 and f2 variables. 

● What would the following write to the files? Would they depend on the 

systems I ran them on?

uint16_t x = 0xABCD;
fwrite(&x, 2, 1, f1);

uint8_t low_byte = x & 0xFF;
uint8_t high_byte = (x >> 8); 
fputc(low_byte, f2);
fputc(high_byte, f2);

Recap Exercise
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Question 2:

How would this be represented in octal:

rw-r - - - - -

Question 3:

If I ran the following on the command line: 

chmod 755 f
A. Would “others” have the execute permission set for the file f?

B. How could I check this from my C code?

Recap Exercise
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Every file and directory in linux has read, write and execute

permissions (access rights) for each of the following user groups:

- user: the file’s owner

- group: the members of the file's group

- other: everyone else

- type ls -l on command line to see

File Permissions
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int stat(const char *pathname, struct stat *statbuf);

- returns metadata associated with pathname in statbuf

- metadata returned includes:

- inode number

- type (file, directory, symbolic link, device)

- size of file in bytes (if it is a file)

- permissions (read, write, execute)

- times of last access/modification/status-change

- returns -1 and sets errno if metadata not accessible

C library wrapper for stat system call
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int lstat(const char *pathname, struct stat *statbuf);
- same as stat() but doesn't follow symbolic links

- in other words gives you metadata about the symbolic link 

and not the file it links to

- important not to get stuck in infinite loops

int fstat(int fd, struct stat *statbuf);
- same as stat() but gets data via an open file descriptor

See man 2 stat

man 3 stat

man 7 inode

C library wrapper for stat system call
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man 3 stat

struct stat {
dev_t     st_dev;      /* ID of device containing file */
ino_t     st_ino;      /* Inode number */
mode_t    st_mode;     /* File type and mode */
nlink_t   st_nlink;    /* Number of hard links */
uid_t     st_uid;      /* User ID of owner */
gid_t     st_gid;      /* Group ID of owner */
dev_t     st_rdev;     /* Device ID (if special file) */
off_t     st_size;     /* Total size, in bytes */
...

};

definition of struct stat
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man 7 inode

st_mode is a bitwise-or of these values (& others):

S_IFLNK    0120000   symbolic link
S_IFREG    0100000   regular file
S_IFDIR    0040000   directory
S_IRUSR    0000400   owner has read permission
S_IWUSR    0000200   owner has write permission
S_IXUSR    0000100   owner has execute permission
S_IRGRP    0000040   group has read permission
S_IWGRP    0000020   group has write permission
S_IXGRP    0000010   group has execute permission
S_IROTH    0000004   others have read permission
S_IWOTH    0000002   others have write permission
S_IXOTH    0000001   others have execute permission

st_mode field of struct stat
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int mkdir(const char *pathname, mode_t mode);
returns 0 if successful, returns -1 and sets errno otherwise

- for example: mkdir("newDir", 0755)
if  pathname is e.g. `a/b/c/d`

- all of the directories `a`, `b` and `c` must exist

- directory `c` must be writable to the caller

- directory `d` must not already exist

the new directory contains two initial entries

- `.` is a reference to itself

- `..` is a reference to its parent directory

Demo: mkdir.c

Making a directory
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// open a directory stream for directory name

DIR *opendir(const char *name);

// return a pointer to next directory entry

struct dirent *readdir(DIR *dirp);

// close a directory stream

int closedir(DIR *dirp);

Found in man 3

Demo list_directory.c

Opening and Reading directories

11



COMP1521 25T2

chmod(char *pathname, mode_t mode) // change permission of file/...

unlink(char *pathname) // remove a file...

rename(char *oldpath, char *newpath) // rename a file/directory

chdir(char *path) // change current working directory

getcwd(char *buf, size_t size) // get current working directory

link(char *oldpath, char *newpath) // create hard link to a file

symlink(char *target, char *linkpath) // create a symbolic link

Demo: chmod.c rm.c rename.c my_cd.c getcwd.c nest_directories.c many_links.c 

chain_links.c

Useful Linux (POSIX) functions
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~ means home directory in Linux

To get this value we can use

char *getenv(const char *name);

Example:

printf("%s", getenv("HOME"));

Home Directory
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Text Representation
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● We know how to represent unsigned integers, signed integers 

and real values in C.

● Text is arguably the most important data type

○ It can represent all other data types via serialization

■ E.g. JSON, XML, YAML, etc…

● Text == sequences of characters

● So how can we represent characters?

How should we represent text?
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● By default in C and MIPS we have used ASCII

● Modern computers use something called “UNICODE” to 

represent the individual characters!

● But other things came before…

So, how should we represent characters?
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• 1828: First electronic Telegraph system (Pavel Schilling)

• 1837: Cooke and Wheatstone Telegraph

• 1844: Morse Code

• 1897: First radio transmission

many other encoding schemes that we won’t cover

• 1943: First (modern) computer (Colossus)

• 1963: ASCII

• 1970s: Extended ASCII

• 1963: EBCDIC

• 1987: Unicode

A timeline of character representations

17



COMP1521 25T2

● Note: this timeline is very Western-centric.

○ There are many other encoding schemes from around the world

● East Asian languages have particularly interesting ones

○ Due to writing systems with very large character sets

○ Some interesting examples include

■ (1980) The Chinese Character Code for Information Interchange

■ (1980) The GB 2312 standard

■ (1984) The Big5 Encodings

■ (1990s) Windows code pages 874 (Thai), 932 (Japan), 936 

(Chinese)...

Disclaimer: 
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● American Standard Code for Information Interchange

○ created by the American Standards Association (ASA)

○ later became the American National Standards Institute (ANSI)

■ the first organization to standardize the C programming language

● 7-bit (fixed-size) encoding

○ 128 possible values

○ all of the values are used

● One of the most common and influential encodings in 

computing

ASCII: 1963
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● When ASCII was created, computers didn’t use monitors.

● Instead, they used teletypes — electromechanical devices with 

a keyboard for input and a printer for output.

○ These could be controlled by a human (typing) or by a computer 

(printing).

● Because the output was a physical mechanism, ASCII included 

control characters to 

○ move the "carriage"

○ start a new line

○ ring the bell 

ASCII: Control Characters
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ASCII: TTY (TeleTYpewriter)
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ASCII: 

22



COMP1521 25T2

● Uses values in the range `0x00` to `0x7F` (0..127)

● Characters partitioned into sequential blocks (sticks)

○ control characters (sticks 0 and 1) (codes 0x00 to 0x1F)

■ e.g. '\0', '\n'

○ Punctuation (stick 2, parts of sticks 3..7)

○ digits (stick 3) (codes 0x30-0x39)

■ e.g. '0'..'9'

● upper case alphabetic (65..90) \... 'A’..'Z'

● lower case alphabetic (97..122) \... 'a’..'z'

ASCII Overview
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● Sequential nature of groups allows for helpful things like

○ Converting character digits into integers

■ ‘4’ - ‘0’ gives us the integer 4

○ Iterating through the alphabet, comparing letters

■ ‘a’ + 1 gives us ‘b’ and also ‘a’ < ‘b’

○ Case conversion 

■ ‘A’ + 32 gives us ‘a’

○ Some patterns are not so helpful…

■ ‘<’ + 2 gives ‘>’

■ ‘[‘ + 2 gives ‘]’    

■ ‘{‘ + 2 gives ‘}’  

■ ‘(‘ + 2 gives ‘*’ 

ASCII Patterns
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● The digits have values of 0b011 followed by the digits binary 

value

○ Allows for fast conversion between ASCII and binary numbers

● Uppercase and Lowercase letters are placed such that:

○ the only difference between them is the 5th bit

○ this allows for very fast case conversion and case insensitive 

string comparison

ASCII: Bit Patterns
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● ASCII_to_DEC.c

○ Convert from ascii character digit to a numeric decimal digit

● ASCII_case_insensitive.c

○ Convert to and from upper case and lower case characters

ASCII Demo
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● ASCII works well for English (American English)

● And is fairly decent for British English.

○ Unless you use the pound sign (£)

● But it doesn’t work well for other european languages

○ and doesn’t work at all for other languages (like Asian 

languages).

● The solution (for other European languages at least) was to use 

the 8th bit to extend the encoding.

ASCII Limitations
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EASCII is not standardized! So there are many different encodings

● All legitimate “Extended ASCII”

● KOI-8: Russian encoding 

● ISO 8859-1 (aka Latin-1): Western European encoding

● Code page 899: DOS mathematical

● symbols etc…

(wikipedia lists 100s of different Code Pages)

This made EASCII perfect for mojibake disasters

Extended ASCII
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Mojibake occurs when:

● a byte string is decoded using the wrong character 

encoding, or 

● two byte strings encoded in different encodings are 

concatenated

This results in garbled, unreadable characters 

Examples:

Mojibake
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Mojibake (cont.)
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Mojibake IRL
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● UNICODE is maintained by the Unicode Consortium

● The goal of UNICODE is to create a single encoding that can 

represent all of the characters in all of the languages in the 

world.

● There are currently 149,878 characters in UNICODE.

● https://en.wikipedia.org/wiki/List_of_Unicode_characters

UNICODE

33
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● UNICODE is so large and has a very structured layout to try and 

make it more intuitive

● The Unicode Standard defines a codespace, (ie “The encoding”)

○ The Unicode codespace ranges from 0x0000 to 0x10FFFF

○ Each hex value represents a code point (i.e. a character)

● This gives a total of 1,114,112 code points

○ (293,168 are currently assigned) - approximately 25%.

UNICODE: Codespace
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These 1.1 million code points are split into 17 planes

● Plane 0 - 0x0000 - 0xFFFF

○ the Basic Multilingual Plane (BMP)

○ the vast majority of characters for most modern languages

● Plane 1 mostly contains historical characters and notation

○ Hieroglyphs e.g. 𓀀 𓀁 𓀂 𓀃

○ musical symbols e.g. 𝄠 𝄡 𝄢 𝄣
○ Emoji e.g. 

● Plane 2 contains mainly additional Chinese, Japanese and 

Korean (CJK) characters

UNICODE: Layout
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● Plane 3 is mostly unused but contains additional CJK 

characters

● Planes 4 - 13 are unassigned planes

● Plane 14 is the Supplementary Special-purpose Plane (SSP)

● Plane 15 -16 are set aside for private usage

UNICODE: Layout
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● The code points range from 0x0000 to 0x10FFFF

○ So we need at least 21 bits to represent them.

● We can use 32 bits to represent a single character.

● UTF-32 is a fixed width encoding

○ Simply take the UNICODE code point and store it in 32 bits.

Storing UNICODE characters: UTF-32
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A → U+0041 → 0b00000000000000000000000001000001

€ → U+20AC → 0b00000000000000000010000010101100

字→ U+5B57 → 0b00000000000000000101101101010111

→ U+1F600 → 0b00000000000000011111011000000000

U+XXXX is the representation of a raw UNICODE code point

● code points are always at least 4 hex digits.

● 4 digit code points are on the 0th plane

● The 5th digit (if there is one) is the plane number

UTF-32: Example

38



COMP1521 25T2

● Representing the largest code point, U+10FFFF would waste 11 

bits!

● The vast majority of characters used are in plane 0 (BMP)

○ They only need 16 bits to represent them, giving 16 wasted bits 

per character

● The vast majority of characters used in the BMP are in block 1 

(ASCII)

○ They only need 7 bits to represent them giving 25 wasted bits per 

character!!

UTF-32: is very very inefficient
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“Hello 思语”  ==
0x00000068

0x00000065

0x0000006c

0x0000006c

0x0000006f

0x00000020

0x0000601D

0x00008BED

8 x 4 = 32 bytes total - Look at all those leading zeros!!

UTF-32: is very very inefficient
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● Goal of UTF-8 to increase efficiency 

○ Waste less bits!

● Unicode has the most common characters in the first planes

○ These common characters should use less bits!

● Use variable width encoding

○ Why use 4 bytes for every character if we don’t have to?

UTF-8
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● A single UTF-8 character can be anywhere from 1 to 4 bytes long

UTF-8 Layout

42

#bytes #bits Byte 1 Byte 2 Byte 3 Byte 4

1 7 0xxxxxxx - - -

2 11 110xxxxx 10xxxxxx - -

3 16 1110xxxx 10xxxxxx 10xxxxxx -

4 21 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
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● All ASCII characters can be stored in 1 byte with zero wasted bits

● All plane 0 characters fit within 3 bytes, 8 bits more efficient than UTF-
32

● Every UNICODE character can fit within 4 bytes, using exactly the same 
number of bits as UTF-32 in the worst case

UTF-8 Layout
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€ (U+20AC)

● Convert to UTF-32 (raw 32 bit representation of the code point)

0x000020AC

0b0000000000000000010000010101100

○ Look at all those leading zeros!

● remove leading 0s from the UTF-32 encoding

0b10000010101100

● Split into 6 bit chunks from right to left

0b 10 000010 101100

Conversion to UTF-8 (1/2)
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€ (U+20AC)

● 0b 10 000010 101100

● Match with appropriate multi-byte encoding (in this case, 3 chunks)

0b 1110xxxx 10xxxxxx 10xxxxxx

0b       10 000010 101100

● Replace the x values with the appropriate bits (0 if none)

0b 11100010 10000010 10101100

● And in hex it looks like

0b 1110 0010 1000 0010 1010 1100

0x    E    2    8    2    A    C

● We saved a byte of storage! 

Conversion to UTF-8 (2/2)
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A → U+0041 → 0b01000001 → 0x41

€ → U+20AC → 0b10 000010 101100 

→ 0b11100010 10000010 10101100 

→ 0xE282AC

字→ U+5B57 → 0b101 101101 010111 

→ 0b11100101 10101101 10010111 

→ 0xE5AD97

→ U+1F600 → 0b 11111 011000 000000 

→ 0b11110000 10011111 10011000 10000000 

→ 0xF09F9880

UTF-8: More Examples
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“Hello 思语”  ==
0x68

0x65

0x6c

0x6c

0x6f

0x20

0xE6809D

0xE8AFAD

12 bytes only - and no more leading zeros!

UTF-8 - much more efficient
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hello_unicode.c

unicode_strings.c

utf8_strlen.c

utf8_encode.c

Writing C that uses Unicode
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● Compact, but not minimal encoding

● ASCII is a subset of UTF-8 - complete backwards compatibility!

● no byte of multi-byte UTF-8 encoding is valid ASCII

● No byte of multi-byte UTF-8 encoding is 0

○ can still use store UTF-8 in null-terminated strings.

● 0x2F (ASCII /) and 0x00 can not appear in multi-byte characters

○ hence can use UTF-8 for Linux/Unix filenames

● C programs can treat UTF-8 similarly to ASCII

○ Beware: number of bytes in UTF-8 string != number of characters.

Summary of UTF-8
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● Filesystems

● C functions for reading/writing directories

● ~

● ASCII

● Unicode

● UTF-32 Encoding

● UTF-8 Encoding

What we learnt Today
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Processes!

Next Lecture
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Content Related Questions:  

Forum

Admin related Questions email: 

cs1521@cse.unsw.edu.au

Reach Out

https://discourse02.cse.unsw.edu.au/25T2/COMP1521/
mailto:cs1521@cse.unsw.edu.au
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Student Support | I Need Help With…
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— student.unsw.edu.au/advisorsStudent Support
Indigenous Student 

Support

Equity Diversity and Inclusion 

(EDI)

— edi.unsw.edu.au/sexual-misconduct

Equitable Learning Service 

(ELS)

— student.unsw.edu.au/els

Academic Language 

Skills

— student.unsw.edu.au/skills

Special Consideration — student.unsw.edu.au/special-consideration

My Feelings and Mental 

Health

Managing Low Mood, Unusual Feelings & Depression

Mental Health 

Connect

Mind 

HUB

student.unsw.edu.au/counselling 

Telehealth

student.unsw.edu.au/mind-hub 

Online Self-Help Resources

1300 787 026

5pm-9am

In Australia Call Afterhours

UNSW Mental Health Support 

Line

Outside Australia 

Afterhours 24-hour 

Medibank Hotline

+61 (2) 8905 0307

Uni and Life Pressures

Stress, Financial, Visas, Accommodation & More

Reporting Sexual Assault/Harassment

Educational Adjustments

To Manage my Studies and Disability / Health Condition

Academic and Study Skills

Special Consideration

Because Life Impacts our Studies and Exams
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