
COMP1521 25T2

COMP1521 25T2

File systems and Text Encoding and
Unicode

Week 8 Lecture 1

Adapted from Angela Finlayson, Dylan Brotherston’s,
Andrew Taylor and John Shepherd’s slides

1

COMP1521 25T2

Today’s Lecture

2

● File systems

○ Recap

○ Useful file system functions

● Representing Text

○ ASCII

○ Unicode

■ UTF8 encoding

COMP1521 25T2

Question 1: Assume I have a opened 2 files for writing and have FILE *

f1 and f2 variables.

● What would the following write to the files? Would they depend on the

systems I ran them on?

uint16_t x = 0xABCD;
fwrite(&x, 2, 1, f1);

uint8_t low_byte = x & 0xFF;
uint8_t high_byte = (x >> 8);
fputc(low_byte, f2);
fputc(high_byte, f2);

Recap Exercise

3

COMP1521 25T2

Question 2:

How would this be represented in octal:

rw-r - - - - -

Question 3:

If I ran the following on the command line:

chmod 755 f
A. Would “others” have the execute permission set for the file f?

B. How could I check this from my C code?

Recap Exercise

4

COMP1521 25T2

Every file and directory in linux has read, write and execute

permissions (access rights) for each of the following user groups:

- user: the file’s owner

- group: the members of the file's group

- other: everyone else

- type ls -l on command line to see

File Permissions

5

COMP1521 25T2

int stat(const char *pathname, struct stat *statbuf);

- returns metadata associated with pathname in statbuf

- metadata returned includes:

- inode number

- type (file, directory, symbolic link, device)

- size of file in bytes (if it is a file)

- permissions (read, write, execute)

- times of last access/modification/status-change

- returns -1 and sets errno if metadata not accessible

C library wrapper for stat system call

6

COMP1521 25T2

int lstat(const char *pathname, struct stat *statbuf);
- same as stat() but doesn't follow symbolic links

- in other words gives you metadata about the symbolic link

and not the file it links to

- important not to get stuck in infinite loops

int fstat(int fd, struct stat *statbuf);
- same as stat() but gets data via an open file descriptor

See man 2 stat

man 3 stat

man 7 inode

C library wrapper for stat system call

7

COMP1521 25T2

man 3 stat

struct stat {
dev_t st_dev; /* ID of device containing file */
ino_t st_ino; /* Inode number */
mode_t st_mode; /* File type and mode */
nlink_t st_nlink; /* Number of hard links */
uid_t st_uid; /* User ID of owner */
gid_t st_gid; /* Group ID of owner */
dev_t st_rdev; /* Device ID (if special file) */
off_t st_size; /* Total size, in bytes */
...

};

definition of struct stat

8

COMP1521 25T2

man 7 inode

st_mode is a bitwise-or of these values (& others):

S_IFLNK 0120000 symbolic link
S_IFREG 0100000 regular file
S_IFDIR 0040000 directory
S_IRUSR 0000400 owner has read permission
S_IWUSR 0000200 owner has write permission
S_IXUSR 0000100 owner has execute permission
S_IRGRP 0000040 group has read permission
S_IWGRP 0000020 group has write permission
S_IXGRP 0000010 group has execute permission
S_IROTH 0000004 others have read permission
S_IWOTH 0000002 others have write permission
S_IXOTH 0000001 others have execute permission

st_mode field of struct stat

9

COMP1521 25T2

int mkdir(const char *pathname, mode_t mode);
returns 0 if successful, returns -1 and sets errno otherwise

- for example: mkdir("newDir", 0755)
if pathname is e.g. `a/b/c/d`

- all of the directories `a`, `b` and `c` must exist

- directory `c` must be writable to the caller

- directory `d` must not already exist

the new directory contains two initial entries

- `.` is a reference to itself

- `..` is a reference to its parent directory

Demo: mkdir.c

Making a directory

10

COMP1521 25T2

// open a directory stream for directory name

DIR *opendir(const char *name);

// return a pointer to next directory entry

struct dirent *readdir(DIR *dirp);

// close a directory stream

int closedir(DIR *dirp);

Found in man 3

Demo list_directory.c

Opening and Reading directories

11

COMP1521 25T2

chmod(char *pathname, mode_t mode) // change permission of file/...

unlink(char *pathname) // remove a file...

rename(char *oldpath, char *newpath) // rename a file/directory

chdir(char *path) // change current working directory

getcwd(char *buf, size_t size) // get current working directory

link(char *oldpath, char *newpath) // create hard link to a file

symlink(char *target, char *linkpath) // create a symbolic link

Demo: chmod.c rm.c rename.c my_cd.c getcwd.c nest_directories.c many_links.c

chain_links.c

Useful Linux (POSIX) functions

12

COMP1521 25T2

~ means home directory in Linux

To get this value we can use

char *getenv(const char *name);

Example:

printf("%s", getenv("HOME"));

Home Directory

13

COMP1521 25T2

Text Representation

14

COMP1521 25T2

● We know how to represent unsigned integers, signed integers

and real values in C.

● Text is arguably the most important data type

○ It can represent all other data types via serialization

■ E.g. JSON, XML, YAML, etc…

● Text == sequences of characters

● So how can we represent characters?

How should we represent text?

15

COMP1521 25T2

● By default in C and MIPS we have used ASCII

● Modern computers use something called “UNICODE” to

represent the individual characters!

● But other things came before…

So, how should we represent characters?

16

COMP1521 25T2

• 1828: First electronic Telegraph system (Pavel Schilling)

• 1837: Cooke and Wheatstone Telegraph

• 1844: Morse Code

• 1897: First radio transmission

many other encoding schemes that we won’t cover

• 1943: First (modern) computer (Colossus)

• 1963: ASCII

• 1970s: Extended ASCII

• 1963: EBCDIC

• 1987: Unicode

A timeline of character representations

17

COMP1521 25T2

● Note: this timeline is very Western-centric.

○ There are many other encoding schemes from around the world

● East Asian languages have particularly interesting ones

○ Due to writing systems with very large character sets

○ Some interesting examples include

■ (1980) The Chinese Character Code for Information Interchange

■ (1980) The GB 2312 standard

■ (1984) The Big5 Encodings

■ (1990s) Windows code pages 874 (Thai), 932 (Japan), 936

(Chinese)...

Disclaimer:

18

COMP1521 25T2

● American Standard Code for Information Interchange

○ created by the American Standards Association (ASA)

○ later became the American National Standards Institute (ANSI)

■ the first organization to standardize the C programming language

● 7-bit (fixed-size) encoding

○ 128 possible values

○ all of the values are used

● One of the most common and influential encodings in

computing

ASCII: 1963

19

COMP1521 25T2

● When ASCII was created, computers didn’t use monitors.

● Instead, they used teletypes — electromechanical devices with

a keyboard for input and a printer for output.

○ These could be controlled by a human (typing) or by a computer

(printing).

● Because the output was a physical mechanism, ASCII included

control characters to

○ move the "carriage"

○ start a new line

○ ring the bell

ASCII: Control Characters

20

COMP1521 25T2

ASCII: TTY (TeleTYpewriter)

21

COMP1521 25T2

ASCII:

22

COMP1521 25T2

● Uses values in the range `0x00` to `0x7F` (0..127)

● Characters partitioned into sequential blocks (sticks)

○ control characters (sticks 0 and 1) (codes 0x00 to 0x1F)

■ e.g. '\0', '\n'

○ Punctuation (stick 2, parts of sticks 3..7)

○ digits (stick 3) (codes 0x30-0x39)

■ e.g. '0'..'9'

● upper case alphabetic (65..90) \... 'A’..'Z'

● lower case alphabetic (97..122) \... 'a’..'z'

ASCII Overview

23

COMP1521 25T2

● Sequential nature of groups allows for helpful things like

○ Converting character digits into integers

■ ‘4’ - ‘0’ gives us the integer 4

○ Iterating through the alphabet, comparing letters

■ ‘a’ + 1 gives us ‘b’ and also ‘a’ < ‘b’

○ Case conversion

■ ‘A’ + 32 gives us ‘a’

○ Some patterns are not so helpful…

■ ‘<’ + 2 gives ‘>’

■ ‘[‘ + 2 gives ‘]’

■ ‘{‘ + 2 gives ‘}’

■ ‘(‘ + 2 gives ‘*’

ASCII Patterns

24

COMP1521 25T2

● The digits have values of 0b011 followed by the digits binary

value

○ Allows for fast conversion between ASCII and binary numbers

● Uppercase and Lowercase letters are placed such that:

○ the only difference between them is the 5th bit

○ this allows for very fast case conversion and case insensitive

string comparison

ASCII: Bit Patterns

25

COMP1521 25T2

● ASCII_to_DEC.c

○ Convert from ascii character digit to a numeric decimal digit

● ASCII_case_insensitive.c

○ Convert to and from upper case and lower case characters

ASCII Demo

26

COMP1521 25T2

● ASCII works well for English (American English)

● And is fairly decent for British English.

○ Unless you use the pound sign (£)

● But it doesn’t work well for other european languages

○ and doesn’t work at all for other languages (like Asian

languages).

● The solution (for other European languages at least) was to use

the 8th bit to extend the encoding.

ASCII Limitations

27

COMP1521 25T2

EASCII is not standardized! So there are many different encodings

● All legitimate “Extended ASCII”

● KOI-8: Russian encoding

● ISO 8859-1 (aka Latin-1): Western European encoding

● Code page 899: DOS mathematical

● symbols etc…

(wikipedia lists 100s of different Code Pages)

This made EASCII perfect for mojibake disasters

Extended ASCII

28

COMP1521 25T2

Mojibake occurs when:

● a byte string is decoded using the wrong character

encoding, or

● two byte strings encoded in different encodings are

concatenated

This results in garbled, unreadable characters

Examples:

Mojibake

29

COMP1521 25T2

Mojibake (cont.)

30

COMP1521 25T2

Mojibake IRL

31

COMP1521 25T2 32

COMP1521 25T2

● UNICODE is maintained by the Unicode Consortium

● The goal of UNICODE is to create a single encoding that can

represent all of the characters in all of the languages in the

world.

● There are currently 149,878 characters in UNICODE.

● https://en.wikipedia.org/wiki/List_of_Unicode_characters

UNICODE

33

https://en.wikipedia.org/wiki/List_of_Unicode_characters
https://en.wikipedia.org/wiki/List_of_Unicode_characters

COMP1521 25T2

● UNICODE is so large and has a very structured layout to try and

make it more intuitive

● The Unicode Standard defines a codespace, (ie “The encoding”)

○ The Unicode codespace ranges from 0x0000 to 0x10FFFF

○ Each hex value represents a code point (i.e. a character)

● This gives a total of 1,114,112 code points

○ (293,168 are currently assigned) - approximately 25%.

UNICODE: Codespace

34

COMP1521 25T2

These 1.1 million code points are split into 17 planes

● Plane 0 - 0x0000 - 0xFFFF

○ the Basic Multilingual Plane (BMP)

○ the vast majority of characters for most modern languages

● Plane 1 mostly contains historical characters and notation

○ Hieroglyphs e.g. 𓀀 𓀁 𓀂 𓀃

○ musical symbols e.g. 𝄠 𝄡 𝄢 𝄣
○ Emoji e.g.

● Plane 2 contains mainly additional Chinese, Japanese and

Korean (CJK) characters

UNICODE: Layout

35

COMP1521 25T2

● Plane 3 is mostly unused but contains additional CJK

characters

● Planes 4 - 13 are unassigned planes

● Plane 14 is the Supplementary Special-purpose Plane (SSP)

● Plane 15 -16 are set aside for private usage

UNICODE: Layout

36

COMP1521 25T2

● The code points range from 0x0000 to 0x10FFFF

○ So we need at least 21 bits to represent them.

● We can use 32 bits to represent a single character.

● UTF-32 is a fixed width encoding

○ Simply take the UNICODE code point and store it in 32 bits.

Storing UNICODE characters: UTF-32

37

COMP1521 25T2

A → U+0041 → 0b00000000000000000000000001000001

€ → U+20AC → 0b00000000000000000010000010101100

字→ U+5B57 → 0b00000000000000000101101101010111

→ U+1F600 → 0b00000000000000011111011000000000

U+XXXX is the representation of a raw UNICODE code point

● code points are always at least 4 hex digits.

● 4 digit code points are on the 0th plane

● The 5th digit (if there is one) is the plane number

UTF-32: Example

38

COMP1521 25T2

● Representing the largest code point, U+10FFFF would waste 11

bits!

● The vast majority of characters used are in plane 0 (BMP)

○ They only need 16 bits to represent them, giving 16 wasted bits

per character

● The vast majority of characters used in the BMP are in block 1

(ASCII)

○ They only need 7 bits to represent them giving 25 wasted bits per

character!!

UTF-32: is very very inefficient

39

COMP1521 25T2

“Hello 思语” ==
0x00000068

0x00000065

0x0000006c

0x0000006c

0x0000006f

0x00000020

0x0000601D

0x00008BED

8 x 4 = 32 bytes total - Look at all those leading zeros!!

UTF-32: is very very inefficient

40

COMP1521 25T2

● Goal of UTF-8 to increase efficiency

○ Waste less bits!

● Unicode has the most common characters in the first planes

○ These common characters should use less bits!

● Use variable width encoding

○ Why use 4 bytes for every character if we don’t have to?

UTF-8

41

COMP1521 25T2

● A single UTF-8 character can be anywhere from 1 to 4 bytes long

UTF-8 Layout

42

#bytes #bits Byte 1 Byte 2 Byte 3 Byte 4

1 7 0xxxxxxx - - -

2 11 110xxxxx 10xxxxxx - -

3 16 1110xxxx 10xxxxxx 10xxxxxx -

4 21 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

COMP1521 25T2

● All ASCII characters can be stored in 1 byte with zero wasted bits

● All plane 0 characters fit within 3 bytes, 8 bits more efficient than UTF-
32

● Every UNICODE character can fit within 4 bytes, using exactly the same
number of bits as UTF-32 in the worst case

UTF-8 Layout

43

COMP1521 25T2

€ (U+20AC)

● Convert to UTF-32 (raw 32 bit representation of the code point)

0x000020AC

0b0000000000000000010000010101100

○ Look at all those leading zeros!

● remove leading 0s from the UTF-32 encoding

0b10000010101100

● Split into 6 bit chunks from right to left

0b 10 000010 101100

Conversion to UTF-8 (1/2)

44

COMP1521 25T2

€ (U+20AC)

● 0b 10 000010 101100

● Match with appropriate multi-byte encoding (in this case, 3 chunks)

0b 1110xxxx 10xxxxxx 10xxxxxx

0b 10 000010 101100

● Replace the x values with the appropriate bits (0 if none)

0b 11100010 10000010 10101100

● And in hex it looks like

0b 1110 0010 1000 0010 1010 1100

0x E 2 8 2 A C

● We saved a byte of storage!

Conversion to UTF-8 (2/2)

45

COMP1521 25T2

A → U+0041 → 0b01000001 → 0x41

€ → U+20AC → 0b10 000010 101100

→ 0b11100010 10000010 10101100

→ 0xE282AC

字→ U+5B57 → 0b101 101101 010111

→ 0b11100101 10101101 10010111

→ 0xE5AD97

→ U+1F600 → 0b 11111 011000 000000

→ 0b11110000 10011111 10011000 10000000

→ 0xF09F9880

UTF-8: More Examples

46

COMP1521 25T2

“Hello 思语” ==
0x68

0x65

0x6c

0x6c

0x6f

0x20

0xE6809D

0xE8AFAD

12 bytes only - and no more leading zeros!

UTF-8 - much more efficient

47

COMP1521 25T2

hello_unicode.c

unicode_strings.c

utf8_strlen.c

utf8_encode.c

Writing C that uses Unicode

48

COMP1521 25T2

● Compact, but not minimal encoding

● ASCII is a subset of UTF-8 - complete backwards compatibility!

● no byte of multi-byte UTF-8 encoding is valid ASCII

● No byte of multi-byte UTF-8 encoding is 0

○ can still use store UTF-8 in null-terminated strings.

● 0x2F (ASCII /) and 0x00 can not appear in multi-byte characters

○ hence can use UTF-8 for Linux/Unix filenames

● C programs can treat UTF-8 similarly to ASCII

○ Beware: number of bytes in UTF-8 string != number of characters.

Summary of UTF-8

49

COMP1521 25T2

● Filesystems

● C functions for reading/writing directories

● ~

● ASCII

● Unicode

● UTF-32 Encoding

● UTF-8 Encoding

What we learnt Today

50

COMP1521 25T2

Processes!

Next Lecture

51

COMP1521 25T2 52

Content Related Questions:

Forum

Admin related Questions email:

cs1521@cse.unsw.edu.au

Reach Out

https://discourse02.cse.unsw.edu.au/25T2/COMP1521/
mailto:cs1521@cse.unsw.edu.au

COMP1521 25T2

Student Support | I Need Help With…

53

— student.unsw.edu.au/advisorsStudent Support
Indigenous Student

Support

Equity Diversity and Inclusion

(EDI)

— edi.unsw.edu.au/sexual-misconduct

Equitable Learning Service

(ELS)

— student.unsw.edu.au/els

Academic Language

Skills

— student.unsw.edu.au/skills

Special Consideration — student.unsw.edu.au/special-consideration

My Feelings and Mental

Health

Managing Low Mood, Unusual Feelings & Depression

Mental Health

Connect

Mind

HUB

student.unsw.edu.au/counselling

Telehealth

student.unsw.edu.au/mind-hub

Online Self-Help Resources

1300 787 026

5pm-9am

In Australia Call Afterhours

UNSW Mental Health Support

Line

Outside Australia

Afterhours 24-hour

Medibank Hotline

+61 (2) 8905 0307

Uni and Life Pressures

Stress, Financial, Visas, Accommodation & More

Reporting Sexual Assault/Harassment

Educational Adjustments

To Manage my Studies and Disability / Health Condition

Academic and Study Skills

Special Consideration

Because Life Impacts our Studies and Exams

	Slide 1: COMP1521 25T2
	Slide 2: Today’s Lecture
	Slide 3: Recap Exercise
	Slide 4: Recap Exercise
	Slide 5: File Permissions
	Slide 6: C library wrapper for stat system call
	Slide 7: C library wrapper for stat system call
	Slide 8: definition of struct stat
	Slide 9: st_mode field of struct stat
	Slide 10: Making a directory
	Slide 11: Opening and Reading directories
	Slide 12: Useful Linux (POSIX) functions
	Slide 13: Home Directory
	Slide 14: Text Representation
	Slide 15: How should we represent text?
	Slide 16: So, how should we represent characters?
	Slide 17: A timeline of character representations
	Slide 18: Disclaimer:
	Slide 19: ASCII: 1963
	Slide 20: ASCII: Control Characters
	Slide 21: ASCII: TTY (TeleTYpewriter)
	Slide 22: ASCII:
	Slide 23: ASCII Overview
	Slide 24: ASCII Patterns
	Slide 25: ASCII: Bit Patterns
	Slide 26: ASCII Demo
	Slide 27: ASCII Limitations
	Slide 28: Extended ASCII
	Slide 29: Mojibake
	Slide 30: Mojibake (cont.)
	Slide 31: Mojibake IRL
	Slide 32
	Slide 33: UNICODE
	Slide 34: UNICODE: Codespace
	Slide 35: UNICODE: Layout
	Slide 36: UNICODE: Layout
	Slide 37: Storing UNICODE characters: UTF-32
	Slide 38: UTF-32: Example
	Slide 39: UTF-32: is very very inefficient
	Slide 40: UTF-32: is very very inefficient
	Slide 41: UTF-8
	Slide 42: UTF-8 Layout
	Slide 43: UTF-8 Layout
	Slide 44: Conversion to UTF-8 (1/2)
	Slide 45: Conversion to UTF-8 (2/2)
	Slide 46: UTF-8: More Examples
	Slide 47: UTF-8 - much more efficient
	Slide 48: Writing C that uses Unicode
	Slide 49: Summary of UTF-8
	Slide 50: What we learnt Today
	Slide 51: Next Lecture
	Slide 52: Reach Out
	Slide 53: Student Support | I Need Help With…

